UNITED STATES # DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ANALYSES OF NATIVE WATER, BOTTOM MATERIAL, ELUTRIATE SAMPLES, AND DREDGED MATERIAL FROM SELECTED SOUTHERN LOUISIANA WATERWAYS AND SELECTED AREAS IN THE GULF OF MEXICO, 1979-81 By Dee L. Lurry Open-File Report 82-690 Prepared in cooperation with the U.S. ARMY CORPS OF ENGINEERS #### UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey P.O. Box 66492 Baton Rouge, LA 70896 Copies of this report can be purchased from: Open-File Services Section U.S. Geological Survey Box 25425, Federal Center Lakewood, CO 80225 ### CONTENTS | | Page | |--|--------------------------------------| | Glossary | V
1
1
4
4
4
6
8 | | Part C: Data for proposed ocean-disposal areas | 101 | | ILLUSTRATIONS | | | [Plates are at back] | | | Plate 1-10. Maps showing location of sampling site(s) 1. along the Upper Calcasieu River, Ia. 2. along the Lower Calcasieu River, Ia. 3. for New Orleans to Venice Hurricane Protection Project, Ia. 4. Mississippi River-Gulf Outlet, Ia. 5. Southwest Pass, Ia. 6. Barataria Bay Waterway, Gulf Section, Ia. 7. Eugene Island, Atchafalaya Bay area, Ia. 8. Calcasieu Ship Channel, Gulf Section, Ia. 9. Inner Harbor Navigation Canal and Mississippi River-Gulf Outlet, New Orleans area, Ia. 10. Gulf Intracoastal Waterway, Ia. | Page | | Figure 1. Map showing location of sampling areas, 1979-81 | 3 | | TABLES | | | 1. Sampling areas, dates sampled, and types and number of samples collected for dredging studies 2. Sampling areas, dates sampled, and types and number of samples collected for elutriate and ocean-disposal studies | 6
7 | | (Part A: Dredging data) | | | 3-4. Water-quality data: 3. Upper Calcasieu River4. Lower Calcasieu River | 11
25 | ### (Part B: Elutriate Data) | | | | Page | |-------|--------|---|------| | Table | 5-12. | Water-quality data: | | | | | 5. Mississippi River-Gulf Outlet | 34 | | | | 6. Southwest Pass | 37 | | | | 7. New Orleans to Venice Hurricane Protection | | | | | Project | 40 | | | | 8. Barataria Bay at Grand Isle | 58 | | | | 9. Inner Harbor Navigation Canal and | | | | | Mississippi River-Gulf Outlet | 65 | | | | 10. Eugene Island, Atchafalaya Bay | 83 | | | | 11. Gulf Intracoastal Waterway | 86 | | | | 12. Calcasieu Ship Channel, Gulf Section | | | | (1 | Part C: Data For Proposed Ocean-Disposal Areas) | | | | 13-16. | Water-quality data: | | | | | 13. Mississippi River-Gulf Outlet | 102 | | | | 14. Southwest Pass | 103 | | | | 15. Barataria Bay at Grand Isle | 104 | | | | 16. Eugene Island, Atchafalaya Bay | 105 | #### **GLOSSARY** <u>Particle size</u>.--is the diameter, in millimeters (mm), of bed material. <u>Particle-size classification</u>.--used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size | e (mm) | Method of analysis | |----------------|-------|--------------|---------------------------------| | Clay | 0.000 | 4- 0.004 | Sedimentation. | | Sand | | 062
- 2.0 | Sedimentation.
Sedimentation | | band | •002 | - 2.0 | or sieve. | | Gravel | 2.0 | -64.0 | Sieve. | Percent finer by weight is the percentage, by weight, of the sample that is of lesser particle size than the indicated value. <u>Insecticides</u> are substances or a mixture of substances intended to prevent, destroy, or repel insects. The technical names for insecticides determined in this report are: Aldrin.-- 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-endo, exo-1,4:5,8-dimethanonaphthalene. Chlordane.--1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan. <u>DDD</u>.--(combination of ortho and para isomers)o,p'-<u>DDD</u> 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane, p,p'-<u>DDD</u> 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane. <u>DDE</u>.--(combination of ortho and para isomers)o,p'-<u>DDE</u> 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethylene, p,p'-<u>DDE</u> 1,1-dichloro-2-bis(p-chlorophenyl)ethylene. <u>DDT</u>.--(combination of ortho and para isomers)o,p'-<u>DDT</u> 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane, p,p'-<u>DDT</u> 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane. <u>Diazinon</u>.--0,0-diethyl 0-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate. <u>Dieldrin.--1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo,exo-1,4:5,8-dimethanonaphthalene.</u> <u>Endosulfan</u>.--1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dimethanol cyclic sulfite. Endrin.--1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo,endo-1,4:5,8-dimethanonaphthalene. Ethion. -- 0, 0, 0', 0'-tetraethyl S, S'methylenediphosphorodithioate. <u>Heptachlor</u>.--1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methanoindene. Heptachlor epoxide.--1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methanoindan. <u>Lindane</u>.--1,2,3,4,5,6-hexachlorocyclohexane, 99 percent or more of gamma-isomer. Malathion.--S-(1,2-dicarbethoxyethyl) 0,0-dimethyldithiophosphate. Methyl parathion. -- 0,0-dimethyl 0-p-nitrophenyl phosphorothioate. Methyl trithion.--phosphorodithioic acid S-[[(4-chlorophenyl) thio]-methyl] 0.0-dimethyl ester. Methoxychlor.--l,l,l-trichloro-2,2-bis(p-methoxyphenyl)ethane. Mirex.--1,la,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1,3,4-metheno-lH-cyclobuta[cd]pentalene. Parathion. -- 0,0-diethyl 0-p-nitrophenyl phosphorothioate. Perthane.--1,1'-(2,2-dichloroethylidene)bis[4-ethylbenzene]. <u>Toxaphene</u>.—chlorinated camphene containing 67-69 percent chlorine by weight. Trithion.--phosphorodithioic acid S-[[(4-chlorophenyl)thio] methyl] 0,0-diethyl ester. <u>Herbicides.</u>—are substances or a mixture of substances intended to control or destroy vegetation. The technical names for herbicides determined in this report are: 2,4-D.--(2,4-dichlorophenoxy) acetic acid. 2,4-DP.--2-(2,4-dichlorophenoxy) propionic acid. 2,4,5-T.--(2,4,5-trichlorophenoxy)acetic acid. Silvex.--2-(2,4,5-trichlorophenoxy) propionic acid. Polychlorinated biphenyls. -- (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. <u>Polychlorinated napthalenes.--(PCN's)</u> are industrial chemicals that are mixtures of chlorinated napthalene compounds having various percentages of chlorine. 1 FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) OF METRIC UNITS | | Multiply | <u>By</u> | To obtain | |------|----------|-----------|-----------------| | foot | (ft) | 0.3048 | meter (m) | | inch | (in.) | 25.4 | millimeter (mm) | | yard | (yd) | 0.9144 | meter (m) | | mile | (mi) | 1.609 | kilometer (km) | To convert temperature in degree Celsius (°C) to degree Fahrenheit (°F), multiply by 9/5 and add 32. ANALYSES OF NATIVE WATER, BOTTOM MATERIAL, ELUTRIATE SAMPLES, AND DREDGED MATERIAL FROM SELECTED SOUTHERN LOUISIANA WATERWAYS AND SELECTED AREAS IN THE GULF OF MEXICO, 1979-81 By Dee L. Lurry #### ABSTRACT The U.S. Geological Survey was requested by the U.S. Army Corps of Engineers, New Orleans District, to provide water-quality data to evaluate environmental effects of dredging activities in selected reaches of the Calcasieu River in southwestern Louisiana. were collected from the upper and lower Calcasieu River between January 1980 and March 1981. Thirty-three samples (22 native-water and ll effluent) were collected from ll dredging sites. In addition, a series of elutriate studies were conducted between July 1979 and July 1981 to determine water quality as a basis for assessing possible environmental effects of proposed dredging activities in the following areas: Grand Bayou and Martins Canal near Happy Jack, unnamed bayou near Port Sulphur, Grand Bayou and Pipeline Canal near Port Sulphur and Bayou des Plantins near Empire; Mississippi River-Gulf Outlet and Harbor Navigation Canal; Southwest Pass; Barataria Atchafalaya Bay at Eugene Island; Calcasieu Ship Channel. Samples of native water and samples of bottom material were collected from 22 different sites and elutriate (mixtures of native water and bottom samples were prepared and analyzed. material) Four proposed ocean-disposal sites were sampled for bottom material only. Samples were analyzed for selected chemical and biological constituents and physical properties. #### INTRODUCTION During the period July 1979 to September 1981 the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, New Orleans District, conducted three types of water-quality studies dealing with dredging activities in selected reaches of major navigable waterways of southern Louisiana. The types of studies were: (1) dredging, (2) elutriate, and (3) proposed ocean disposal. The Corps of Engineers selected all the sites and collected all the samples. Dredging studies were concerned with the water quality at selected sites, along the upper and lower Calcasieu River, (fig. 1) in support of Section 404 of the Federal Water Pollution Control Act and Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972. The studies were conducted between January 1980 and March 1981. Results of these studies are presented in this report and provide a basis to assess potential
environmental impacts associated with dredging operations and the disposal of dredged material. Samples were collected 100 yards upstream and downstream from the dredging site and from the discharge area. The elutriate studies were initiated to collect data for use in assessing possible environmental effects of proposed dredging activities in selected reaches of Iouisiana waterways. The waterways and areas investigated were the Mississippi River-Gulf Outlet; Calcasieu Ship Channel; Barataria Bay; Southwest Pass; Eugene Island, Atchafalaya Bay; Gulf Intracoastal Waterway; Inner Harbor Navigation Canal, and miscellaneous canals and bayous in the New Orleans to Venice Hurricane Protection Project (fig. 1). Sampling at proposed ocean-disposal sites was done to determine the effects of dredging activities in selected areas. The sites were in Barataria Bay; near Eugene Island, Atchafalaya Bay; near the Mississippi River-Gulf Outlet; and near Southwest Pass. Four samples from proposed ocean-disposal sites were each collected within several yards of the collection site of the elutriate collected at that latitude and longitude. Elutriate sites near Happy Jack, Port Sulphur, and Empire were sampled as part of the Hurricane Protection Project. The Hurricane Protection Project was authorized by Congress as a result of Public Law 71, 84th Congress, First Session, July 15, 1955. This law authorized and directed the Corps of Engineers to survey the eastern and southern seaboards of the United States for flood-damage potential due to hurricanes, with particular reference to areas where severe damage has occurred. The New Orleans to Venice portion of the project was authorized by the Flood Control Act of 1962. The U.S. Geological Survey cooperated with the Corps of Engineers to investigate possible environmental impacts of constructing levees with locally dredged material. It was of interest to the Corps of Engineers to predict what effects these levees would have on the quality of the water with which they come into contact. The method used to analyze for the potential effects these levees would have on water quality was the "standard elutriate test." The U.S. Geological Survey prepared and analyzed all of the samples in the aforementioned studies. The results are presented here without interpretation. Figure 1.--Location of sampling areas, 1979-81. #### MATERIALS AND METHODS #### Dredging Native-water samples were collected near the top of the water column and immediately chilled. Each water sample was prepared for analysis according to methods approved by the U.S. Geological Survey for appropriate processing and preservation. All samples for analysis for dissolved constituents were filtered through a prerinsed membrane filter (0.45-micrometer pore size). Effluent samples were collected from hopper and hydraulic dredges. Dredge effluent was sampled at the point of discharge where hydraulic dredges were used and at the point of entry into the hopper (prior to dewatering) where hopper dredges were used. The effluent samples were allowed to settle for 30 minutes. After settling, a portion of the supernatant was decanted, treated as appropriate for the specific analysis, and stored at 4.0°C until analyzed. The remainder of the sample was centrifuged and filtered through a prerinsed 0.45-micrometer membrane filter. The filtrate was then treated and analyzed for selected dissolved constituents. ### Elutriate An elutriate, as defined by the U.S. Environmental Protection Agency (1975, p. 41295) " * * * is the supernatant resulting from the vigorous 30-minute shaking of one part bottom sediment from the dredging site with four parts water (vol/vol) collected from the dredging site followed by one hour settling time and appropriate centrifugation and a 0.45-micron [0.45-micrometer membrane] filtration." Native water and bottom-material samples were collected using methods developed by Keeley and Engler (1974). Water samples were collected from the upper, middle, and lower third of the water column; then composited and chilled prior to sample preparation. A portion of the composite sample was then filtered through a prerinsed 0.45-micrometer membrane filter and analyzed for selected dissolved constituents. The remainder of the unfiltered sample was refrigerated at 4.0°C and later analyzed for selected constituents or used in the preparation of the elutriate. Bottom-material samples were collected using one of four pieces of equipment: U.S.-BMH-60 bottom sampler, U.S.-BM-60 bottom sampler, Shipek grab, and a pipe dredge. All bottom samplers were Teflon coated to prevent metal contamination. samples were mixed by hand and a representative portion was analyzed for selected inorganics, pesticides, and physical properties. Particle-size analysis of bottom material was performed on three samples from the Barataria Bay Waterway elutriate site. (See table 6.) The remainder was stored at 4.0°C until needed for the elutriate test. The use of brand names in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey. Bottom material and the corresponding native-water sample were mixed in a 1:4 volumetric ratio of bottom material to native water. This mixture was placed in a Hobart model D-300 mixer with a Hobart "B" beater at low speed for 30 minutes. (The stainless steel bowl and beater were modified by application of a nylon coating to prevent contamination of samples.) After shaking, the suspension was decanted, allowed to stand for 1 hour, centrifuged, and filtered through a 0.45-micrometer membrane filter. The filtrate (standard elutriate) was then treated and stored at 4.0°C prior to analysis. The elutriate sampling for the sites in Barataria Bay at mile 0.8, at Grand Isle included one native sample and three elutriate samples. The elutriate samples for these sites were prepared as follows: Sample A was prepared from native water and bed material sampled at the site 900 yards west of Barataria Bay Waterway. Sample B was prepared from native water used in sample A and bed material sampled at the site 900 yards southwest of Barataria Bay Waterway. Sample C was prepared from native water used in sample A and bed material sampled at the site 500 yards southwest of Barataria Bay Waterway. (See table 8.) Laboratory analyses were performed in accordance with the following guidelines: - 1. Native-water and effluent samples were analyzed for nutrients (ammonia nitrogen and kjeldahl nitrogen), residues, cyanides, chemical oxygen demand, and dissolved metals using methods described by Skougtad and others (1979). - 2. Native-water and effluent samples were analyzed for phenols, selected pesticides (insecticides and herbicides), and other organic compounds using methods outlined by Goerlitz and Brown (1972). - 3. Native-water and effluent samples were analyzed for oil and grease using methods described in "Methods for Chemical Analysis of Water and Wastes" (U.S. Environmental Protection Agency, 1979). - 4. Native-water and effluent samples were analyzed for settleable matter as outlined in "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association and others, 1976). - 5. Samples were analyzed for chlorophyll (a and b) in phytoplankton using methods described by Greeson (1979). - 6. Bottom-material samples were analyzed for heavy metals, nutrients and other constituents as outlined by Skougstad and others (1979), and for oil and grease using methods described in "Methods for Chemical Analysis of Water and Wastes" (U.S. Environmental Protection Agency, 1979). - 7. Bottom material samples were analyzed for selected insecticides using methods outlined by Goerlitz and Brown (1972). - 8. Bottom-material samples were analyzed for particle size using methods outlined in "Engineering and Design, Laboratory Soils Testing" (U.S. Army Corps of Engineers, 1970). #### RESULTS Table 1 shows the type, number, and dates of samples collected in the two dredging areas. Table 2 shows the type, number, and dates of samples collected in the seven elutriate sampling areas and the four proposed ocean-disposal areas. Sampling sites were selected by the Corps of Engineers. Results of the analyses are presented in three sections. The data from the dredging studies (tables 3-4) are included in part A; the data from the elutriate studies (tables 5-12) are included in part B; the data from the studies of proposed ocean-disposal areas (tables 13-16) are included in part C. The locations of sampling sites are shown on plates 1-10. Iatitude and longitude coordinates for each site appear in table headings (table 3-16) as the first 13 digits (the first six representing the latitude coordinate and the next seven representing the longitude coordinate) of a 15-digit identification number. Table 1.--Sampling areas, dates sampled, and types and number of samples collected for dredging studies | Sampling area | Dates sam | pled | Number
of
sites | Up-
stream | Down-
stream | Efflu-
ent | Remarks | |--------------------------|---|------|-----------------------|---------------|-----------------|---------------|---------------------------| | Upper Calcasieu
River | 1-24-80,
3- 7-80,
5- 1-80,
7-22-80 | | 7 | 7 | 7 | 7 | See plate 1 and table 15. | | Lower Calcasieu
River | 10- 2-80, 1
1-21-81, | | 4 | 4 | 4 | 4 | See plate 2 and table 16. | | Total | | | 11 | | 33 | | | Table 2.--Sampling areas, dates sampled, and types and number of samples collected for elutriate and ocean-disposal studies | Sampling area | Date | Number | Number of | Number of native samples | Number of
elutriate | Number of bottom | Proposed ocean- | |--|----------|----------|-------------
--------------------------|------------------------|------------------|-----------------| | | sampred | or sites | Total | Dissolved | samples | samples | disposal | | Grand Bayou and Martin Canal near Happy Jack, unnamed bayou near Port Sulphur, Grand Bayou and Pipeline Canal near Port Sulphur and Bayou des Plantins near Empire | 7-17-79 | 9 | 9 | 9 | 9 | 9 | 1 | | Mississippi River-Gulf
Outlet and Inner Har-
bor Navigation Canal- | 7-13-79 | 9 | 9 | 9 | 9 | y | 1 | | Mississippi River-
Gulf Outlet | 10-30-79 | П | 1 | 1 | 1 | 1 | - | | Southwest Pass | 10-24-79 | Н | ~ -1 | H | 1 | ~ | Г | | Barataria Bay | 10-18-79 | ٦ | ٦ | H | H | П | Н | | D | 07-08-81 | ч | ~ | П | က | П | 1 | | Eugene Island,
Atchafalaya Bay | 10-25-79 | 1 | Н | Н | 1 | H | П | | Calcasieu Ship Channel,
Gulf Section | 10-18-79 | 1 | Н | г | 7 | П | 1 | | Gulf Intracoastal
Waterway | 07-08-81 | 4 | 4 | 4 | 4 | 4 | 1 | | Total | | 22 | 22 | 22 | 24 | 22 | - 4 | #### SELECTED REFERENCES - American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1976, Standard Methods for the examination of water and wastewater, 14th ed.: Washington, American Public Health Association, p. 95. - Brightbill, D. B. and Treadway, J. B., Jr., 1980, Analyses of water, bank material, bottom material, and elutriate samples collected near Belzoni Mississippi (upper Yazoo Projects): Baton Rouge, La., U.S. Geological Survey Open-File Report 80-758, p. 3. - Demas, C. R., 1976, Analyses of native water, bed material, and elutriate samples of major Louisiana waterways, 1975: Baton Rouge, La. U.S. Geological Survey Open-File Report 76-853, 304 p. - Demas, C. R. and Higgins, P. C., 1977, Analyses of native water and dredged material from southern Louisiana waterways, 1975-76: Baton Rouge, La., U.S. Geological Survey Open-File Report 77-503, 180 p. - Dupuy, A. J., and Couvillion, N. P., 1979, Analyses of native water, bottom material, and elutriate samples of southern Louisiana waterways, 1977-78: Baton Rouge, La., U.S. Geological Survey Open-File Report 79-1484, 414 p. - Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 40 p. - Greeson, P. E., ed., 1979; A Supplement to-Methods for collection and analysis of aquatic biological and microbiological samples (U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A4): Reston, Va., U.S. Geological Survey Open-File Report 79-1279, 92 p. - Keeley, J. W., and Engler, R. M., 1974, Discussion of regulatory criteria for ocean disposal of dredged materials: Elutriate test rationale and implementation guidelines: U.S. Army Corps of Engineers, Waterways Experiment Station, Office of Dredged Material Research, Vicksburg, Miss., Miscellaneous Paper D-74-14. - Leone, H. L., Jr., 1976, Analyses of water, core material and elutriate samples collected near New Orleans, Louisiana, (Lake Pontchartrain, Louisiana, and vicinity hurricane protection project): Baton Rouge, La., U.S. Geological Survey Open-File Report 76-758, 22 p. - Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E. and Duncan, S. S., eds., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Al, 626 p. - Stallworth, G. R., and Jordan, H. F., 1980, Analyses of water and dredged material from selected southern Louisiana waterways and selected areas in the Gulf of Mexico, 1976-78: Baton Rouge, La., U.S. Geological Survey Open-File Report 80-694, 141 p. - Thibodeaux, B. J., Benedict, B. A., and Grimwood, Charles, 1979, Ocean dumping of dredged material—Gulf of Mexico, in Volume 2, Coastal Zone '78: American Society of Civil Engineers Proceedings, 1978 Conference, San Francisco, Calif. p. 1115-1116. - U.S. Army Corps of Engineers, 1970, Engineering and design, laboratory soils testing: Engineer Manual EM 1110-2-1906, November 30, 1970, app. V, p. V1-V24. - U.S. Environmental Protection Agency, 1975, Navigable waters: Discharge of dredged or fill material: Federal Register, September 5, 1975, v. 40, no. 173, pt. 230, p. 41292-41298. - 1979, Methods for chemical analysis of water and wastes: Cincinnati, Ohio, U.S. Environmental Protection Agency, Office of Research and Development, Report EPA-600/4-79-020, 460 p. ### HYDROLOGIC DATA Part A: Dredging Data (Tables 3-4) # TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300530093193000 CALCASIEU RIVER AT MILE 23.0, NEAR HACKBERRY, LA | | COBALT | SETTLE- TUR- ABLE BID- MATTER ITY (ML/L/ (NIU) HR) 10 <1.0 5 <1.0 | LEVEL) AS
(MG/L) CAC | S NONCAR-
S/L BONATE | CALCIUM S DIS- I SOLVED SO (MG/L (M AS CA) AS | AGNE- SIUM, SODIUM, DIS- DIS- DIS- DIVED SOLVED NG/L (MG/L S MG) AS NA) L00 8700 570 5900 | |--|--|---|--|---|--|---| | | 7.2 60 | 75 980 | | 1800 4200 | | 950 7800 | | POTAS - ALKA- SIUM, LINITY SULF DIS - FIELD DIS SOLVED (MG/L SOL (MG/L AS (MG DATE AS K) CACO3) AS S JUL, 1980 | CHLO- R FATE RIDE, A S- DIS- D SOLVED | OOLIDS, SOLIDS, NON- MY 105 VOIA- DEG. C, SUS- PENDED PENDED (MG/L) | SOLIDS, NIT
VOIA- GI
TILE, NITH
SUS- TO
PENDED (MC
(MG/L) AS | FRO- NITRO-
EN, GEN,
RATE NITRITE
FAL
TOTAL
G/L (MG/L
N) AS N) | NITRO- NI
GEN, C
AMMONIA ORC
DIS- I
SOLVED SO
(MG/L (MG/L AS N) AS | ITRO-
SEN,
SENIC
DIS-
DIVED
WG/L
5 N) | | | 16000 16000
1400 11000 | 9 0
4 0 | | .04 .10
.07 .05 | .45
.67 | 1.4 | | | L500 14000 | 149 95 | 54 | .84 .00 | .22 | 1.0 | | ERABLE SOLVED
(UG/L (UG/L | NITRO- PHOS- GEN, PHORUS TOTAL (MG/L (MG/L AS N) AS P) 1.7 .09 24 2.3 CHRO- MIUM, COPPES HEXA- TOTAL VALENT, RECOL DIS. ERABI (UG/L) | S, DIS- ARS L SOLVED TO L (MG/L (U) AS P) AS D .09 D .10 .04 R, L COPPER, IF L COPPER, IF L SOLVED SOL L (UG/L (U | ARSENIC DIS- TAL SOLVED G/L (UG/L AS) AS AS) 2 2 2 1 7 23 LEAD, ON, TOTAL IIS- LISS- LEAD, LEA | TOTAL LIU RECOV- DIS ERABLE SOL (UG/L (UG AS BE) AS 10 10 10 MAN NES LEAD, TOT DIS- SOLVED ERA (UG/L (UG | PECOV- MED ERABLE (/L (UG/L BE) AS CD) 10 0 10 1 10 0 IGA- IE, MANGA- NESE, AL NESE, SOLVED IS- BELE SOLVED IG/L (UG/L | (UG/L AS CD) 0 0 0 MERCURY TOTAL RECOV- FRABLE (UG/L | | DATE AS CR) AS CR)
JUL, 1980 | AS CR) AS CU | U) AS CU) AS | FE) AS PB) | AS PB) AS | MN) AS MN) | AS HG) | | 22 30 30
22 20 20
22 30 20 | - | 16 12
44 30
4 1 2 | 190 6
110 7
4000 4 | 5 | 410 390
220 110
0000 8100 | .0 | | MERCURY TOTAL DIS- RECOV- SOLVED ERABLE (UG/L (UG/L DATE AS HG) AS NI) JUL , 1980 | NICKEL, SELE-
DIS- NIUM,
SOLVED TOTAL
(UG/L (UG/L
AS NI) AS SE | - NIUM, TO
, DIS- RE
L SOLVED EF
L (UG/L (U | NC, VTAL ZINC, XXV- DIS- ABLE SOLVED IG/L (UG/L E ZN) AS ZN) | CARBON, ORGANIC CYAN TOTAL TOI (MG/L (MC AS C) AS | AL PHENOLS | OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) | | 221 3 | 4 | 0 0 | 80 80 | 4.3 | .00 5 | _ | | 221 4
220 2 | 2
2 | 0 0 | 110 110
50 | 8.3
13 | .00 4
.00 4 | | # TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300530093193000 CALCASIEU RIVER AT MILE 23.0, NEAR HACKBERRY, LA--CONTINUED | JUL
22. | | PCB,
TOTAL
(UG/L) | (UG/1 | AL LEN OT- POI AA- CHI IAL TOI (G) (UG/ | A- PO
ES, TOT
Y- IN E
OR. TOM
AL TEI | SOT-
MA- ALDI
RIAL TOT
(KG) (U | TO
IN
IN, TON
TAL T | ORIN,
OTAL
BOT-
1 MA-
ERIAL
G/KG) | CHLOR-
DANE,
TOTAL
(UG/L) | CHLO:
DANE
TOTA:
IN BO
TOM M
TERL
(UG/K | ,
L
T-
A- DDD
AL TOTA
G) (UG/ | L TERI
L) (UG/K | L
T-
IA- DDI
IAL TOTI
IG) (UG) | AL. | | |------------|---------------|--|--|--|--|--|---|--|--|---|--|---|---|--------------------------------|-------| | 22.
22. | | .0 | | | 0 | | .000 | | .0 | - | | - | | 000 | | | JUL
D | ATE
, 1980 | DDE,
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | ,
- DD
L TOT. | DI
TO!
IN F
I, TOM
AL TE!
/L) (UG/ | OT- DI
MA- AZII
ZIAL TO
'KG) (U | D:
AZII
TO:
I- IN I
NON, TOM
FAL TEI
G/L) (UG, | TAL
BOT- I
MA- EI
RIAL TO
/KG) (I | .0
DI-
LORIN
DTAL
UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | - ENDO
- SULFA
L TOTA
) (UG/ | ENDO
SULFA
TOTA
- IN BO
N, TOM M
L TERI
L) (UG/K | N,
L,
T-
IA- ENDRI
AL TOTA
G) (UG, | ENDR
TOT
IN B
IN, TOM I
AL TER
/L) (UG/ | AL
OT-
MA-
IAL
KG) | | | 22.
22. | | | | .000
.000 | | .00
.00 | | .000 | | | 000
000 | | .000
.000 | | | | 22. | | | | .000 | .0 | .02 | .0 | .000 | | _ | 000 | | .000 | •0 | | | | JUL , | ATE
, 1980 | THION, TOTAL (UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOTAL
(UG/L | CF
TO7
E BC
N | ATL. | INDANE
TOTAL
(UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | | | 22. | | .00 | | .00 | | .0 | | | .000 | | .00
.00 | | | | | | 22. | | .00 | .0 | •00 | | | | .0 | .000 | .0 | .00 | .0 | | | | | | ATE | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL
(UG/L) | TOT. IN
BOTTOM
MATL. | | L Ti | THYL
TRI-
HION,
I. IN
DITIOM
MATL.
G/KG) | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | | | 22. | , 1980
 | .00 | | .00 | | .0 | 0 | | .00 | | .00 | | | | | | 22.
22. | | .00 | .0 | .00 | | .0 | | | .00
.00 | .0 | .00 | .0 | | | | | D | ATE
, 1980
 | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL | TOTAL
TRI- | TI
TO
TO
TO
(U | | 2,4-D,
TOTAL
(UG/L)
.00
.00 | 2, 4-DP
TOTAL
(UG/L)
.00
.00 | 2,4,5-T
TOTAL
(UG/L)
.00
.00 | SILVEX, TOTAL (UG/L) | | | | DATE | TIME | - | | | | | | | | | RTICLE SI | | | | | | JL , 1980 | | | ETER (M | | .00 1.0 | 0.50 | 0.25 | 0.12 | 0.06 | 0.0 | 31 0.01 | 6 0.008 | | 0.002 | 0.001 | | 22 | 1024 | % FIN | er by Wi | EIGHT | | | 99.5 | 98.0 | 96.5 | 94.5 | 90. 5 | 85.5 | 75.0 | 66.0 | 62.0 | . _ # TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300629093195400 CALCASIEU RIVER AT MILE 24.0, NEAR HOLLYWOOD, LA | DATE JUN , 1980 05UPSTRE 05DOWNST 05EFFLUE | CO:
DU
AN
(UM
AM
REAM | FIC
N-
CT-
CE | PH I | NUM- I
OBALT : | TUR-
BID- 1 | ETTLE- ABLE MATTER ML/L/ HR) <1.0 <1.0 <1.0 | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 40 37 | IN
BOTT
MA
TERI
(MG/ | YAL
I HAI
YOM NES
A- (MI
YAL A | SS NONG
G/L BONZ
S (MG | SS, CALA
CAR- DIS
ATE SO:
G/L (M
CO3) AS | MAGNE- STUM, S- LIVED SOLVED G/L (MG/L CA) AS MG) 6.2 2.6 7.0 2.3 40 110 | |---|--|---|--|--|--|--|---|---|--|---|--|--| | SODI
DIS
SOLV
(MG
DATE AS
JUN , 1980
05 8 | UM, S
- D
ED SO
E/L (M | IUM, LI
IS- F
LVED (
IG/L | IELD D
MG/L S
AS (| LFATE R
IS- D
OLVED S
MG/L (I
SO4) A | HLO- R
IDE, A
IS- D
DLVED | OLIDS,
ESIDUE
T 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLI
VOI
TII
SUS
PENI | DS, G
A- AMM
E, D
S- SO
DED (M
G/L) AS | EN, GEN ONIA TO' IS- IN I LVED M G/L (MG | ,NH4 G
TAL ORG
BOT D
AT. SO
/KG (M | TRO- NITRO- EN, GEN, AM- ANIC MONIA + IS- ORGANIC LIVED DIS. G/L (MG/L N) AS N) .74 1.5 | | | 0 | 2.0
71 | 13
390 | 24 | 120
100 | 1 4
252 | 12
20 | 2 | 2 | .76 |
80 | 1.0 1.8
.00 13 | | | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC | ARSENI
DIS-
SOLVE
(UG/I
AS AS | TOM TOM TER UG | PAL LI
OT- TO
MA- RI
DIAL EI
S/G (U | ERYL- IUM, OTAL ECOV- RABLE UG/L S BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | | 05
05
05 | 2430 | .33 | .04 | 1
1
26 | 1
1
9 | Ł |

10 | 0
0
0 | <1
<1
1 |

1 | 1
1
0 | 1
1
0 | | DATE | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS- | CHRO-
MIUM,
RECOV.
FM BOT-
O TOM MA-
TERIAL | CHRO-
MIUM,
HEXA-
VALENI
DIS | COPE TOTE F, REC | PER,
PAL CO
NOV- D
NBLE S
S/L (1 | PPER,
IS-
OLVED
UG/L
S CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | JUN , 1980
05
05
05 | ,

.10 | (
(
) 10 | | | | 0
0
0 | 13
9
11 | 6
6
4 |

46 | 250
230
40 | 9
5
8 | 2
3
0 | | DATE | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLI
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVEI
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL | ERABI | L MERO
7-
DI
LE SOI
L (UC | CURY FM
CS- TO
CVED T
G/L (| RCURY
ECOV.
BOT-
M MA-
ERIAL
UG/G
S HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | | JUN , 1980
05
05 | | 130
90 | 4(|) | | .1 | .0 | | 7
6 | 0 2 | | 0 | | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIA
(UG/G | ZINC,
TOTAL
RECOV-
ERABIL
L (UG/L | ZINC,
- DIS-
E SOLVEI
(UG/L | ZINC,
RECON
FM BOT
TOM MA
TERIA
(UG/O | V.
I'- CARE
A- ORGA
AL TOT
G (MC | ANIC CY
FAL T
S/L (| .27 ANIDE OTAL MG/L S CN) | CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN) | PHENOIS (UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG) | | 05
05
05 | 0
0
0 |
 | - |) 10 | | 1 | L6
L6
19 | .00
.00 |
0 | 7
13
4 | 0
0
 |
0 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300629093195400 CALCASIEU RIVER AT MILE 24.0, NEAR HOLLYWOOD, LA--CONTINUED | DATE
JUN , 198 | PCB,
TOTAL
(UG/L) | TOT
IN B
TOM I
TER
(UG/ | AL LEN
OT- POI
MA- CHI
LIAL TO | IA- PO
IES, TO:
X- IN I
OR. TOM
IAL TEI | | AL TER | AL
OT-
MA-
IAL | CHLOR-
DANE,
TOTAL
(UG/L) | CHLC
DANE
TOTA
IN BO
TOM M
TERI
(UG/K | C,
L
MT~
MA~ DDI
TAL TOTM | L TER | AL
OT-
MA- DD
IAL TOT | AL | |-------------------|--|--|--|---|---|---|---------------------------|--|---|---|--|---|-------------------------| | 05 | .3 | | | 0 | | 000 | | .0 | - | | 000 | | 000 | | 05 | .2 | | | .0 | | 000 | | .0 | | | 000 | | 000 | | 05 | .0 | ı | 17 . | .0 | .0 . | 000 | .0 | .0 | • | .0 .0 | 000 | .9 . | 000 | | DATE | DDE,
TOTAL
IN BOI
TOM MA
TERLA | - DD
L TOI | TOT
IN I
OT, TOM | OT- DO
MA- AZII
OT LAIS | DI AZIN TOT I- IN B NON, TOM I'AL TER G/L) (UG/ | ON,
AL
OT- DI
MA- ELD
IAL TOT | -
RIN | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO
SULFA
TOTA
(UG/ | IN, TOM! | AN,
AL
OT-
MA-ENDR
IAL TOT | | AL
OT-
MA-
IAL | | JUN , 198
05 | | | .000 | | .00 | | .000 | | | .000 | | .000 | | | 05 | | . <u>-</u> | .000 | | .01 | | .000 | | | .000 | | .000 | | | 05 | • | .0 | .000 | .0 | .04 | .0 | .003 | .0 | | .000 | .0 | •000 | .0 | | 05 | DATE
1 , 1980 | THION, TOTAL (UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
(UG/L) | | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | MA
(UG/ | OR CIDE IN TOM LI TL. T (KG) (| NDANE
OTAL
UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | | ••• | .00 | .0 | .00 | | .000 | | .0 | .000 | .0 | .00 | .0 | | | | DATE 1980 | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL
PARA- | METHYL TRI- THION, TOTAL (UG/L) | MET
THI
TOT.
BOT | HYL
CON,
IN
TOM M | IIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | 05 | · · · | .00 | - - | .00 | | .00 | | | .00 | | .00 | | | | |
 | .00 | .0 | .00
.00 | | .00
.00 | | .0 | .00
.00 | .0 | .00 | .0 | | | ງເປ | DATE
N , 1980 | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOTAL
TRI-
THION
(UG/L) | THI
TOI
IN E
TOM | RI-
ION,
FAL
SOT-
MA-
RIAL T | 2,4-D,
TOTAL
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | | | | 5
5 | .00
.00 | | .0 | | .00
.00 | | | .60
.14 | .00 | .00 | .00 | | | | 5 | .00 | .00 | | .0 | .00 | | .0 | .05 | .00 | .01 | .00 | | | entre es | | | | | | | DOM | | TAT 752 | DMTCT 10 CT | ייוני | | | | TIM
1980 | | ETER (M | M) 2 | .00 1.0 | 0 0.50 | 0.25 | 125.125 | 0.062 | | RTICLE SI
31 0.01 | | 0.004 | 0.002 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301148093171700 CALCASIEU RIVER AT MILE 31.4, NEAR HOLLYWOOD, LA | DATE
MAY , 19 | 80 | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------------------|---|---|---|---
---|--|---|--|--|--|--| | 01UP | STREAM
WNSTREAM | 4720
4620
20600 | 5.8
5.9
7.0 | 20
20
10 | 5
3
15 | <1.0
34
<1.0 | 130
920
93 |
210000 | 460
450
2400 | 450
440
2300 | 38
37
160 | | DATE
MAY , 1980 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 01
01 | 89
88
490 | 790
790
4000 | 31
30
170 | 14
14
67 | 240
220
940 | 1400
1400
7300 | 27
24
284 | 21
17
68 | 6
7
216 | .02
.02
.10 | .02
.01
.02 | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | MAY , 1980
01
01 | .04
.03
.12 | 4.7
2.6
1.4 | 2.8
1.4 |
842 | 2.0
1.9
1.9 | 1.9
.80 | 6.7
4.5
3.3 | 4.7
2.2 | 6070 | 6.7
4.5
3.4 | .14
.11
1.1 | | | | | | | | | | | | | | | DATE | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RFCOV- ERABLE (UG/L AS CR) | | | PHORUS,
DIS-
SOLVED
(MG/L
AS P) | TOTAL
(UG/L | DIS-
SOLVED
(UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | LIUM,
DIS-
SOLVED
(UG/L | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MIUM,
TOTAL
RFCOV-
ERABLE
(UG/L | | DATE MAY , 1980 01 01 01 | PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS AS) | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) | MIUM,
TOTAL
RFCOV-
ERABLE
(UG/L
AS CR)
20
10 | | DATE
MAY , 1980
01
01 | PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL | DIS- SOLVED (UG/L AS AS) 1 1 2 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 6 COPPER, TOTAL RECOV- ERABLE (UG/L | LIUM,
TOTAL RECOV- ERABLE (UG/L AS BE) 0 10 10 COPPER, DIS- SOLVED (UG/L | LIUM, DIS- SOLVED (UG/L AS BE) 0 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L | TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L | DIS-
SOLWED
(UG/L
AS CD)
0
0
0
LEAD,
DIS-
SOLWED
(UG/L
AS PB) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 20 10 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | | DATE MAY , 1980 01 01 01 01 01 01 | PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)) 0 0 10 MA NE SO | TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) 40 MANGA- NE SE, RE RIS- FM LIVED TOM G/L TE | DIS- SOLVED (UG/L AS AS) 1 1 2 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER COV. TO BOT- REB MA- ERIAL (U | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 6 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 14 11 5 CURY TAL MER COV- IABLE SC G/L (UG/L (| COPPER, DIS-SOLVED (UG/L AS CU) CCURY FM MEF RESCURY FM MIS-TOWN | LIUM, DIS- SOLVED (UG/L AS BE) COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) COURY COURY COV. NICE BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 260 230 50 CKEL, NIC | TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 6 NIC R CKEL, FM IS- TOTAL R CKEL, FM | DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L AS PB) 1 1 CKEL, ECOV. BOT- SI M MA- NI UG/G (UG/G (UG/G) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 30 SI ELE- NI IUM, I DTAL SC GG/L (UG/L | MIUM, TOTAL RFCOV- ERABLE (UG/L AS CR) 20 10 20 MANGA- NESE, TOTAL RFCOV- ERABLE (UG/L AS MN) 220 210 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301148093171700 CALCASIEU RIVER AT MILE 31.4, NEAR HOLLYWOOD, LA--CONTINUED | | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | | | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | |--|---|---|---|--|--|---|---|--|--|---|------------------------| | 01
01
01 |
0 | 70
4 0
30 | 40
20
10 |
57 | 22
20
7.9 | .15
.13
.00 |
1 | 62
29
0 | 2
2
 |
1500 | | | PCB,
TOTE
DATE (UG/1
MAY , 1980
01 | AL TER | AL LENI OT- POLY MA- CHIA IAL TOTA KG) (UG/ | A- PC
S, TOT
C- IN B
OR. TOM I | AL
OT-
MA- ALDR
IAL TOT | - | AL OT- CHIA MA- DAN IAL TOT KG) (UG/ | E, TOM I | E,
AL
OT-
MA- DDI
IAL TOTA
KG) (UG, | AL TER | AL
OT-
MA- DDI
MAL TOTI
KG) (UG) | AL | | 01 | .0 | | .0 |
•0 | .000 |
.0 | .0 | | .000 | | .000 | | DATE
MAY , 198(| DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
TOTAL
(UG/L) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI -
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
TOTAL
(UG/L) | | | 01
01
01 |

.0 | .000
.000 |

.0 | .00
.00 |

.0 | .000
.000 | | .000
.000 |

.0 | .000
.000 | | | DATE
MAY , 198 | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ETHION,
TOTAL
(UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
(UG/L) | | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | | LINDANE
TOTAL
(UG/L) | | MALA-
THION,
TOTAL
(UG/L) | | | 01
01 | .0 | .00 | .0 | .000 | | .000 | | .000
.000 | | .00
.00 | | | DATE
MAY , 198 | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN POT-
TOM MA-
TERIAL
(UG/KG) | | | 01
01 | | .00 | .00 | | .00 | | .00 |
 | .00 |
 | | | 01
DATE
MAY , 198 | | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-APHENE, TOTAL (UG/L) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TOTAL TRI- THION (UG/L) | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
TOTAL
(UG/L) | .0 2, 4-DP TOTAL (UG/L) | .00
2,4,5-T
TOTAL
(UG/L) | SILVEX, TOTAL (UC/L) | | | 01
01 | .00 | | .0
.0 | | .00
.00 | | | | | | | | 01 | .00 | .00 | .0 | .0 | .00 | .0 | .00 | .00 | .00 | .00 | | | NATE TIME
NY, 1980 DIA
01 1020 % FI | METER (MI
NER BY WI | | 00 1.00 | 0.50 | | | .062 0.0 | ARTICLE SI
031 0.01
0 90.0 | | 0.004
66.5 | 0.002 0.0
51.0 41.5 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301222093162300 CALCASIEU RIVER AT MILE 32.4, NEAR MAPLEWOOD, LA | DATE
APR , 19:
03UP | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS)
6.0 | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR)
<1.0 | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |--------------------------------------|---|--|---|--|---|---|---|--|---|---|--| | 03DO | WNSTREAM | 56 | 5.5 | 70 | 40 | <1.0 | 39 | 16000 | 8 | 3 | 1.8 | | 03EF | FLOENT | 5680 | 7.5 | 70 | 70 | 610 | 140 | 16000 | 470 | 260 | 31 | | DATE
APR , 1980 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOIA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 03
03
03 | 1.0
.9
96 | 6.8
6.3
1000 | 1.2
1.1
64 | 7
5
210 | 3.2
2.1
5.9 | 11
11
1900 | 21
25
47000 | 18
16
42500 | 3
9
4500 | .05
.04
.00 | .01
.02
.05 | | DATE
APR , 1980 | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | 03
03
03 | .06
.06 | .11
.13 | .11
.13 | 32 | 1.2
.86
4.0 | •57
•74
~~ | 1.3
.99
13.0 | .68
.87 |
416 | 1.4
1.1
13 | .03
.09
1.6 | | | | | | ARSENIC | BERYL- | | BERYL- | | | CADMIUM | CHRO- | | DATE | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) |
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | | PHORUS,
DIS-
SOLVED
(MG/L
AS P) | TOTAL
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | LIUM,
DIS-
SOLVED
(UG/L | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L | | DATE APR , 1980 03 03 03 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS AS) | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
<1
<1 | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | DATE APR, 1980 03 03 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL (UG/L AS AS) 1 11 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL | DIS- SOLVED (UG/L AS AS) 0 1 12 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 1 COPPER, TOTAL RECOV- ERABLE (UG/L | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
<1
<1
0
COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 0 IRON, DIS- SOLVED (UG/L | TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) | DIS- SOLVED (UG/L AS CD) 1 <1 0 LEAD, DIS- SOLVED (UG/L | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | | DATE APR, 1980 03 03 03 DATE APR, 19 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) 980 0 0 10 MANGA- NESE, DIS- SOLVED (UG/L AS MN) | TOTAL (UG/L AS AS) 1 11 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) | DIS- SOLVED (UG/L AS AS) 0 1 12 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 1 | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L AS CU) 2 1 | LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 180 200 | TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 5 3 | DIS- SOLVED (UG/L AS CD) 1 <1 0 LEAD, DIS- SOLVED (UG/L AS PB) 0 0 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 70 70 | #### TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER #### 301222093162300 CALCASIEU RIVER AT MILE 32.4, NEAR MAPLEWOOD, LA--CONTINUED | DATE
APR , 1980 | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS (UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | | |---|--|---|--|--|---|---|---|---|---|---|-------------------------|---| | 03
03
03 | 1.0 | 20
20
40 | <3
7
30 |
18 | 12
13
38 | .00
.00 | | 0
3
4 | 0
0
0 |
1000 | | | | PCB,
TOTAL
DATE (UG/L
APR , 1980 |) (UG/14 | AL LENE OT POLY NA CHLO IAL TOTA (G) (UG/I | A- PCN S, TOTA Y- IN BO OR. TOM M AL TERI L) (UG/K | L
T-
A- ALDR
AL TOT
G) (UG | AL TER | AL OT- CHI MA- DAI LIAL TO 'KG) (UG) | DAI
TO:
LOR- IN I
NE, TOM
TAL TEI
/L) (UG, | TAL
BOT-
MA- DD
RIAL TOT
/KG) (UG | AL TER
(L) (UG/ | AL
OT-
MA- DD
IAL TOT
KG) (UG | AL.
/L) | | | 03 | 0 | | .0 |
 | .000 | | .0 | | .000 | | .000 | | | DDE TOTA IN BO TOM M TERL DATE (UG/K | ,
L
T-
A- DDT
AL TOTA | DD7
TOTA
IN BO
I, TOM M | AL
OT- DI-
MA- AZINC
IAL TOTA | N, TOM
L TEF | ON,
PAL
SOT- DI
MA- ELL
CIAL TOI | ELD
TO
I IN
ORIN TOM
TAL TE | MA- SUL
RIAL TO | | AN,
AL
OT-
MA-ENDR
LIAL TOT | ENDR
TOT
IN B
IN, TOM | AL
OT-
MA-
IAL | | | APR , 1980
03 | | .000 | | 00 | | .000 | | .000 | | .000 | | | | | | .000
.000 | | .00
.00 | .0 | .001 | .0 | .000
.001 | .1 | .000
.000 | .0 | | | DATE
APR, 1980
03
03 | ETHION, TOTAL (UG/L) .00 | ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | HEPTA-
CHIOR,
TOTAL
(UG/L)
.000 | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L)
.000 | | I LINDANE TOTAL (UG/L) | TERIAL
(UG/KG) | MALA-
THION,
TOTAL
(UG/L)
.00 | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | | 03 DATE APR , 1980 | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | METHYL PARA- THION, TOTAL (UG/L) | .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYI TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) | N
MIREX, | MIREX,
TOTAL
IN BOT-
TOM MA- | PARA-
THION,
TOTAL
(UG/L) | PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | | | | 03
03 | .00 | | .00 | | .00 | | •00 | | .00
.00 | | | | | 03 | .00
.00 | .0 PER- THANE IN | .00
.00 | TOXA-PHENE, TOTAL IN BOT- | .00 | TRI-
THION,
TOTAL
IN BOT- | .00 | | .00 | .0 | | | | DATE
APR , 1980
03 | THANE
TOTAL
(UG/L) | BOTTOM
MATERIL
(UG/KG) | APHENE,
TOTAL
(UG/L) | TOM MA-
TERIAL
(UG/KG) | TRI-
THION
(UG/L) | TOM MA-
TERIAI
(UG/KG) | - 2,4-D,
L TOTAL | TOTAL
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | | | | 03
03 | .00 | .00 | .0 |
.0 | .00 | | 02 | .00 | .00 | .00 | | | | | •00 | •00 | •0 | •0 | •00 | | | | | | | | | | METER (MM
MER BY WE | | | 0.50
99.5 | | 0.125 (| | ARTICLE S: 031 0.03 5 25.0 | 16 0.008 | 0.004
22.0 | 0.002
19.5 | 1 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301259093153600 CALCASIEU RIVER AT MILE 33.5, NEAR WESTLAKE, LA. | DATE
MAR , 190
07UP
07DO
07EF | STREAM
WNSTREAM | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
3100
2720
28900 | PH
(UNITS)
6.9
6.9
7.5 | COLOR
(PLAT-
INUM-
COBALIT
UNITS)
40
40 | TUR-
BID-
ITY
(NIU)
20
20 | SETTLE-ABLE MATTER (ML/L/HR) <1.0 <1.0 <50 | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 46 49 270 | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 7100 | HARD-NESS
(MG/L
AS
CACO3)
330
290
3800 | HARD-NESS, NONCAR-BONATE (MG/L CACO3) 310 270 3600 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
25
22
240 | |---|--|--|--
--|--|--|---|--|--|--|--| | DATE
MAR , 1980 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 07
07
07 | 65
57
770 | 500
420
5700 | 22
19
230 | 18
15
163 | 150
130
1500 | 910
750
10000 | 19
23
13500 | 8
12
12200 | 11
11
1350 | .11
.11
.05 | .01
.02
.01 | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | MAR , 1980
07
07 | .12
.13
.06 | .30
.34
5.0 | .30
.28
5.0 |
-0 | .70
1.1
1.5 | .80
.92 | 1.0
1.4
6.5 | 1.1
1.2 |
2520 | 1.1
1.5
6.6 | .03
.04
.08 | | | PHOS- | | ADCENIT <i>C</i> | ARSENIC
TOTAL | BERYL-
LIUM,
TOTAL | BERYL- | BERYL-
LIUM,
RECOV. | CADMIUM
TOTAL | CADMIUM | CADMIUM
RECOV.
FM BOT- | CHRO-
MIUM,
TOTAL | | DATE | PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | RECOV-
ERABLE
(UG/L
AS BE) | DIS-
SOLVED
(UG/L
AS BE) | FM BOT-
TOM MA-
TERIAL
(UG/G) | RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOM MA-
TERIAL
(UG/G
AS CD) | RECOV-
ERABLE
(UG/L
AS CR) | | | DIS-
SOLVED
(MG/L
AS P) | TOTAL
(UG/L | DIS-
SOLVED
(UG/L | TOM MA-
TERIAL
(UG/G | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FM BOT-
TOM MA-
TERIAL | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TERIAL
(UG/G | ERABLE
(UG/L | | DATE MAR , 1980 07 07 07 | DIS- SOLVED (MG/L AS P) .02 .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS AS) | TOM MA-
TERIAL
(UG/G
AS AS) | RECOV-
ERABLE
(UG/L
AS BE)
0
0 | DIS-
SOLVED
(UG/L
AS BE) | FM BOT-
TOM MA-
TERIAL
(UG/G) | RECOV-
ERABLE
(UG/L
AS CD)
0
0 | DIS-
SOLVED
(UG/L
AS CD) | TERIAL
(UG/G
AS CD)
0 | ERABLE
(UG/L
AS CR)
10
0 | | DATE
MAR , 1980
07
07 | DIS- SOLVED (MG/L AS P) .02 .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL | DIS- SOLVED (UG/L AS AS) 1 1 3 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L | TOM MATERIAL (UG/G AS AS) COPPER, TOTAL RECOVERABLE (UG/L | RECOV-
ERABLE
(UG/L
AS BE)
0
0
10
COPPER,
DIS-
SOLVED
(UG/L | DIS- SOLVED (UG/L AS BE) 0 0 10 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G | FM BOTTOM MATERIAL (UG/G) IRON, DIS- SOLVED (UG/L | RECOV-
ERABLE
(UG/L
AS CD)
0
0
0
LEAD,
TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS CD)
0
0
2
LEAD,
DIS-
SOLVED
(UG/L | TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOTTOM MATERIAL (UG/G | ERABLE (UG/L AS CR) 10 0 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | | DATE MAR , 1980 07 07 07 07 07 | DIS- SOLVED (MG/L AS P) .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)) 0 0 20 MA NE SC | TOTAL (UG/L AS AS) 1 1 3 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 30 MA NGA- NESE, RE DIS- FM LIVED TOM | DIS-SOLVED (UG/L AS AS) 1 1 3 CHRO-MIUM, HEXA-VALENT, DIS. (UG/L AS CR) 0 1 0 NGA-SE, MERCOV. TO BOTH. REIMOND REIM REIM REIM REIM REIM REIM REIM REIM | TOM MA- TERIAL (UG/G AS AS) 2 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 5 4 4 CURY TTAL MEI COV- IABLE SG/L (UG/L (UG/L) | RECOV- ERABLE (UG/L AS BE) COPPER, DIS- SOLVED (UG/L AS CU) 2 2 1 MEI RI RCURY FM DIS- TOO DIVED TI UG/L (U | DIS- SOLVED (UG/L AS BE) 0 0 10 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 16 CCURY CCURY CCOV. NICE BOT- TOM MA- RECOV. BOT- BOT- BOT- BOT- BOT- BOT- BOT- | FM BOTTOM MATERIAL (UG/G) | RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 2 4 3 NIC RI CKEL, FM LS- TOU TO | DIS- SOLVED (UG/L AS CD) 0 0 2 LEAD, DIS-
SOLVED (UG/L AS PB) 0 0 CKEL, ECOV. BOT- SI MA- NI MA- NI SERIAL TO | TERIAL (UG/G AS CD) O LEAD, RECOV. FM BOTTTOM MATERIAL (UG/G AS PB) | ERABLE (UG/L AS CR) 10 0 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 110 110 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301259093153600 CALCASIEU RIVER AT MILE 33.5, NEAR WESTLAKE, LA.--CONTINUED | 07 20 20 20 8.5 .00 0 0 1 0 0 0 7 07 20 20 20 9.5 .00 1 0 0 0 0 0 0 7 07 0 20 20 57 8.0 .00 1 0 0 1 0 0 0 7 07 0 20 20 57 8.0 .00 0 1 0 0 0 0 3100 0 | DATE
MAR , 1980 | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | |---|--------------------------------|---|--|---|--|---|--|---|--|---|---|-------------------------| | | 07
07 | | 20 | 20 | | 9.5 | .00 | | 1 | 0 | | | | 07 900000000000000000 07 0 -2 .0 .0000000000000000 07 0 22 .0 .0 .0 .0 .000 .0 .0 .0 .0 .0 .0 .0 . | PCB,
TOTI
DATE (UG/) | PO
TO
IN I
TOM
AL TE | NAPI CB, THE TAL LEM BOT- POL MA- CHLI RIAL TOT | H-
A- PCI
ES, TOTA
Y- IN BO
DR. TOM M | N,
AL
OT-
MA- ALDR
IAL TOT | ALDR
TOT
IN B
IN, TOM | IN,
AL
OT- CHL
MA- DAN
IAL TOT | CHIC
DANE
TOTA
OR- IN BC
E, TOM M
AL TERI | OR-
C,
L
OT-
IA- DDI
AL TOTA | DD
TOT
IN B
O, TOM | D,
AL
OT-
MA- DD
IAL TOT | AL. | | DDE_ DDT_ | 07
07 | .0 | | .0 | | .000 | | .0 | | .000 | | .000 | | 07000 | TOT: IN B TOM I TER DATE (UG/) | AL
OT-
MA- D
IAL TO | TOT
IN B
DT, TOM
TAL TER | AL
OT- DI
MA- AZIN
IAL TOT | AZIN
TOT
- IN E
ON, TOM
AL TER | ION,
PAL
BOT- DI
MA- ELL
RIAL TOT | ELDE
TOI
- IN E
RIN TOM
'AL TEF | IIN,
PAL
POT- ENDO
MA- SULF?
PIAL TOTA | SULFA
TOTA
O- IN BO
AN, TOM I
AL TER | AN,
AL
OT-
MA-ENDR
IAL TOT | TOT
IN B
IN, TOM
AL TER | AL
OT-
MA-
IAL | | HINDAY CHILOR CHILOR CHILOR CHILOR CHILOR TOTAL | 07
07 | | .000 | | .00 | | .000 | , | .000 | | .000 | | | 07 | | TOTAL
(UG/L) | TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR,
TOTAL | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR
EPOXIDE
TOTAL | CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL. | TOTAL | TOTAL
IN BOT-
TOM MA-
TERIAL | THION, | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | | | METH- | 07
07 | .00 | | .000 | | .000 |) | .000 | | .00 | | | | 07 | DATE | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL. | METHYL
TRI-
THION,
TOTAL | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL. | MIREX,
TOTAL | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL | PARA-
THION,
TOTAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | | | TOXA- TRI- PER- PHENE, THION, THANE TOTAL TOTAL PER- IN TOX- IN BOT- TOTAL IN BOT- THANE BOTTOM APHENE, TOM MA- TRI- TOM MA- 2,4-D, 2,4-DP 2,4,5-T SILVEX, TOTAL MATERIL TOTAL TERIAL THION TERIAL TOTAL TOTAL TOTAL TOTAL DATE (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/L) MAR, 1980 07 0.000013 .00 .00 .00 070000008 .00 .00 | 07
07 | .00 |) | .00 | | .00 | | .00 | | .00 | | | | 070000013 .00 .00 .00 .00 .00 .00 .00 .00 | DATE | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL | TOX-
APHENE,
TOTAL | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL | TOTAL
TRI -
THION | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL | 2,4-D,
TOTAL | 2, 4-DP | 2,4,5-T
TOTAL | SILVEX,
TOTAL | | | | 07
07 | .00 |) <u></u> - | .0 | | .00 | | .08 | .00 | .00 | .00 | | DATE DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 1050 % FINER BY WEIGHT -- 99.9 99.8 98.0 97.0 93.5 87.0 79.0 69.0 56.0 40.0 32.0 MAR , : # TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301333093151700 CALCASIEU RIVER AT MILE 34.0, NEAR WESTLAKE, LA | DATE
FEB , 19
06UP
06DO | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
2350
2100 | PH (UNITS) 6.7 6.9 | COLOR
(PLAT-
INIM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU)
60
35 | SETTLE-
ABLE
MATTER
(ML/L/
HR)
<1.0
<1.0 | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 41
38 | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3)
250
210 | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3)
230
190 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |---|---|--|---|---|---|---|---|--|--|---|--| | 06EF | FLUENT | 24500 | 7.9 | 30 | 40 | | 120 | 100000 | 3100 | 2900 | 190 | | DATE
FEB , 1980 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) |
SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 06
06
06 | 48
41
640 | 380
330
4800 | 15
13
1600 | 16
17
238 | 100
90
1000 | 700
590
9400 | 44
48
42 | 31
31
19 | 13
17
23 | .07
.07
.12 | .04
.04
.03 | | DATE
FEB , 1980 | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | 06
06 | .11
.11
.15 | .42
.45
6.7 | .38
.40
6.7 |
40 | .88
.85
4.3 | 1.0
.90
1.7 | 1.3
1.3
11.0 | 1.4
1.3
8.4 |

1990 | 1.4
1.4
11 | .07
.07
.66 | | | | | | | | | | | | | | | DATE | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | | PHORUS,
DIS-
SOLVED
(MG/L
AS P) | TOTAL
(UG/L | DIŞ-
SOLVED
(UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | LIUM,
DIS-
SOLVED
(UG/L | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L | | DATE FEB , 1980 06 06 06 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS AS) | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
0 | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
0
0 | DIS-
SOLVED
(UG/L
AS CD) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | DATE
FEB , 1980
06
06 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | TOTAL (UG/L AS AS) 1 1 4 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL | DIS- SOLVED (UG/L AS AS) 0 0 5 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 8 COPPER, TOTAL RECOV- ERABLE (UG/L | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L | LIUM, DIS- SOLVED (UG/L AS BE) 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L | DIS-
SOLVED
(UG/L
AS CD)
1
1
1
LEAD,
DIS-
SOLVED
(UG/L
AS PB) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G | MILM, TOTAL RECOV- ERABLE (UG/L AS CR) 10 10 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | | DATE FEB , 1980 06 06 DATE FEB , 1980 06 06 | PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) .00 .00 .00 .00 .00 .00 .00 .00 .00 . | TOTAL (UG/L AS AS) 1 1 4 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) 300 MANGA-NESE, REDIS-FM MIUS-FM MUVED TOM MIUNED TOM MIUS-FM MUVED TOM MIUNED MIUN | DIS- SOLVED (UG/L AS AS) 0 0 5 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER XXVV. TO BOT- BEDT- BEDT- BET- MA- ERIAL (U | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 8 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 0 0 0 CURY TAL MEI COV- IABLE SG/L (UG/L) | COPPER, DIS-SOLVED (UG/L AS CU) CCURY FM DIS-SOLVED (UG/L AS CU) CCURY FM DIS-SOLVED CUG/L AS CU) | LIUM, DIS- SOLVED (UG/L AS BE) 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 23 RCURY ECOV. NIC BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 170 170 80 EXEL, DTAL NICE SCOV- RABLE SCOG/L (UG/L) | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 1 LFAD, TOTAL RECOV- ERABLE (UG/L AS PB) 3 2 6 NICE (UG/L FM EXEL, FM EXEL, FM EXEL, FM EXEL, EXE | DIS- SOLVED (UG/L AS CD) 1 1 1 1 LEAD, DIS- SOLVED (UG/L AS PB) 0 0 2 CKEL, ECOV. EOT- SI ECTIAL TUG/G (UG/G (UG | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 40 SEELE- NI TOTAL SCOK LECOV. LECOV | MILM, TOTAL RECOV- ERRALE (UG/L AS CR) 10 10 20 MANGA- NESE, TOTAL RECOV- ERRALE (UG/L AS MN) 110 110 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301333093151700 CALCASIEU RIVER AT MILE 34.0, NEAR WESTLAKE, LA--CONTINUED | DATE
FEB , 1 | NIO
TOT
IN I
TOM
TE:
(U) | LE-
UM,
FAL
BOT-
MA-
RIAL
G/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | SOLV
(UG/ | , FM
- TC
ED T
L (| CINC,
ECOV.
BOT-
MMA-
ERIAL
(UG/G
AS ZN) | CARBOI
ORGAN
TOTAL
(MG/I
AS C | IC CYA | NIDE
TAL
IG/L
5 CN) | CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN) | PHENO
(UG/ | G
LS | REASE,
TOTAL | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | |-----------------------------------|---|--|---|----------------------------|---|---|---|---|---|---|---|---|---|---|--------------------------------| | 06
06 | .500 |
0 | 40
40
30 |) | 40
40
30 |
53 | 11
11
12 | | .00
.00 | | | 1
1
1 | 0
0
0 | 1000 | | | T | CB,
OTAL
G/L) | PCB
TOTA
IN BO
TOM M
TERI
(UG/K | L LE
T- PC
IA- CI
AL TC | OLY- I
HLOR. I
OTAL | PCN,
TOTAL
N BOT-
OM MA-
TERIAI
UG/KG) | - ALDR | II, T
AL | LDRIN,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | CHIL
DAN
TOT
(UG/ | DAI
TO'
OR- IN I
E, TOM
AL TE | IOR-
NE,
TAL
BOT-
MA-
RIAL
/KG) | DDD,
TOTAL
(UG/L | TER | AL
OT-
MA- DD
MAL TOT | AL | | 06
06
06 | .0
.0 | |
57 | .0
.0 |
 | - | .000
.000 | .0 | | .0
.0
.0 | .0 | .0 | 000
000
000 | .0 | .000
.000 | | IN
IC
DATE (C
FEB , 1980 | DDE,
TOTAL
N BOT-
IM MA-
TERIAL
IG/KG) | DDI
TOTA
(UG/ | TO
IN
I, TO
AL TI
(L) (UC | ERIAL
G/KG) | DI-
ZINON
TOTAL
(UG/L) | TER
) (UG/ | ON,
PAL
OT-
MA-
LIAL
(KG) | DI-
ELDRIN
TOTAL
(UG/L) | TER
(UG/ | IN,
TAL
OT- EN
MA- SUL
IAL TO
KG) (U | DO- 1
FAN, 1
TAL
G/L) (| ENDO-
SULFAN
TOTAL
IN BOI
TOM MA
TERLA
(UG/KO | V,
C-
A- ENDR
AL TOTA
G) (UG) | AL TER
/L) (UG/ | AL
OT-
MA-
IAL
KG) | | 06
06 | .0 | | .000
.000
.000 | .0 | .00
.00 | 0 | .0 | .00
.00 | 0 | .0 | .000
.000 | - | | .000
.000
.000 | .0 | | DATE | OT
I) E | iion,
Vial
IG/L) | ETHION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | - HEP?
- CHLC
L TOTA | CA- II
OR, T | HEPTA-
CHLOR,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | HEPT
CHLO
EPOXI
TOTA
(UG/ | C
A-EP
OR TO
DE B | EPTA-
HLOR
OXIDE
I'. IN
OTTOM
MATL.
G/KG) | LINDANE
TOTAL
(UG/L) | TER | AL
)T-
VA-
TAL | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | FEB , 1
06
06 | 1980 | .00
.00 | - | - , | .000
.000
.000 | .0 | | 000
000
000 |
.0 | .00
.00 | 00 |
.0 | .00
.00 | .0 | | | DAT
FEB , |)
CI
T(
T)
E ((| TH-
XY-
HLOR,
TAL
JG/L) | METH-
OXY-
CHLOR
TOT. I
BOTTO
MATL
(UG/KG | METI
N PARA
M THIC | HYL
A- T
ON,
AL | ETHYL PARA- THION, OT. IN BOTTOM MATL. UG/KG) | METH
TRI
THIC
TOTA
(UG/ | HYL I
:- TC
ON, E | ETHYL
TRI-
HION,
T. IN
OTTOM
MATL.
G/KG) | MIREX,
TOTAI
(UG/L) | TER | AL
OT-
MA-
IAL | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | 06
06
06 | -500 | .00
.00 |
 - | .00
.00
.00 |

.0 | | .00
.00
.00 |

.0 | .00.
00. |) |

.0 | .00
.00 |

.0 | | | DAT
FEB, | T
T
() E | PER-
HANE
OTAL
UG/L) | PER-
THANE
IN
BOTTOM
MATERI
(UG/KG | TO
I APHE
IL TOT | K- I
NE, I | TOXA- PHENE, TOTAL N BOT- OM MA- TERIAL UG/KG) | TOTA
TRI
THIC
(UG, | T
T
AL IN
T - TO | TRI-
HION,
OTAL
BOT-
M MA-
ERIAL
IG/KG) | 2,4-D,
TOTAL
(UG/L) | , 2, 4
TOT | -DP | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | | | 06
06
06 | _,,00 | .00
.00 | | | .0
.0
.0 |
-0 | | .00
.00
.00 | .0 | .03
.09 | 9 | .00
.00 | .00
.00 | .00
.00 | | | TIME | | -00 |) | | 1.00 | 0.50 | 0.25 | | M MOT | ATERIAL I | PARTICL | | E | | 0.0 | DATE FEB , 080 DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 1045 % FINER BY WEIGHT -- -- 99.0 99.0 96.0 92.5 85.5 75.5 66.0 49.5 39.0 31.0 TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301349093144700 CALCASIEU RIVER AT MILE 36.0, NEAR WESTLAKE, LA | DATE
JAN , 19
24UP | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS)
6.7 | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR)
<1.0 | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |----------------------------------|---|--|---|---|--|--|--|--|---|---|--| | 24DO
24EF | WNSTREAM | 1610
17800 | 6.8
7.6 | 80
60 | 50
15 | < 1.0
 | 47
2000 | 55000 | 150
1800 | 130
1500 | 13
130 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) |
ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | JAN , 1980
24
24
24 | 24
28
350 | 220
240
3200 | 9.8
11
120 | 17
19
244 | 61
67
570 | 370
430
5900 | 32
78
47 | 28
56
21 | 4
22
26 | .08
.07
.00 | .08
.08
.04 | | DATE
JAN , 1980 | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | 24
24
24 | .16
.15
.04 | .16
.17
14.0 | .06
.03
14.0 | 134 | 1.0
.72
5.0 | .94
.60
.00 | 1.2
.89
19.0 | 1.0
.63
12 |

2220 | 1.4
1.0
19 | .05
.05
.21 | | | | | | | | | | | | | | | DATE | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM PECCV. FM BOT- TOM MA- TERIAL (UG/G AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | DATE JAN , 1980 24 24 | PHORUS,
DIS-
SOLVED
(MG/L
AS P) | TOTAL
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | LIUM,
DIS-
SOLVED
(UG/L | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | PECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L | | JAN , 1980
24
24
24 | PHORUS,
DIS-
SOLVED
(MG/L
AS P)
.02
.01
.03
CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | TOTAL
(UG/L
AS AS)
1
2 | DIS-
SOLVED
(UG/L
AS AS) | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
0
0 | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
0
0 | DIS-
SOLVED
(UG/L
AS CD)
<1
<1 | PECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | JAN , 1980
24
24
24 | PHORUS,
DIS-
SOLVED
(MG/L
AS P)
.02
.01
.03
CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | TOTAL (UG/L AS AS) 1 2 9 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL | DIS- SOLVED (UG/L AS AS) 1 1 8 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 7 COPPER, TOTAL RECOV- ERABLE (UG/L | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
<1
<1
0
COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L | DIS- SOLVED (UG/L AS CD) <1 <1 0 LEAD, DIS- SOLVED (UG/L | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | | DATE JAN, 1980 24 24 24 24 24 24 | PHORUS, DIS- SOLVED (MG/L AS P) .02 .01 .03 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) 0 0 10 MA NE | TOTAL (UG/L AS AS) 1 2 9 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 10 MA NGA- NESE, RE DIS- FM LIVED TOM | DIS- SOLVED (UG/L AS AS) 1 1 8 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER COV. TO BOT- RE I MA- ERIAL (UM- | TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 7 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 4 4 2 CURY TAL MER COV- INABLE INABL | COPPER, DIS- SOLVED (UG/L AS CU) COPPER, DIS- SOLVED (UG/L AS CU) MEI RU | LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 15 CCURY ECOV. NIC BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- | LIUM, RECOV. FM BOTTOM MATERIAL (UG/G) IRON, DISSOLVED (UG/L AS FE) 200 210 70 CKEL, DTAL NIGHT NIG | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 8 6 NIC RECOV- ERABLE (UG/L AS PB) 10 10 10 10 10 10 10 10 10 10 10 10 10 | DIS- SOLVED (UG/L AS CD) <1 <1 0 LEAD, DIS- SOLVED (UG/L AS PB) 2 2 0 CKEL, ECOV. BOT- SI ETIAL TUG/G (UG/G (UG/G (UG/G (UG/G) (UG/G) (UG/G) (UG/G) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 SI ELE- NI IUM, III SI UTAL SC UG/L (UTAL (U | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 90 80 | TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301349093144700 CALCASIEU RIVER AT MILE 36.0, NEAR WESTLAKE, LA--CONTINUED | DATE
JAN , 198 | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | • | | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS
(UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | |--|---|--|---|---|---|---|---|---|---|---|----------------------------------| | 24 | | 4 0
30 | 20
6 | | 15
16 | .00 | | 6
1 | 1
0 | | | | 24 | 0 | 30 | 20 | 37 | 35 | .00 | 0 | 2 | | 1600 | | | PCF
TOTI
DATE (UG,
JAN , 1980
24 | TOI
IN E
, TOM
'AL TEF | OT- POLY MA- CHIC RIAL TOTY (KG) (UG/1 | A- PCN
S, TOTA
Y- IN BO
OR. TOM M
AL TERI
L) (UG/K | L
T-
A- ALDRI
AL TOTA
G) (UG/ | L TER | AL
OT- CHI
MA- DAN
IAL TOI | E, TOM
AL TER | E,
AL
OT-
MA- DDI
IAL TOTE
KG) (UG, | AL TER | AL
OT-
MA- DD
IAL TOT
KG) (UG | AL | | 24 | .0 | | - | | .000 | | .0 | | .000 | | .000 | | 24 | .0 | | | | .000 | .0 | | | | 1.5 | .000 | | TO:
IN I
TOM
TEI
DATE (UG,
JAN , 1980
24 | MA- DI
CIAL TOT
/KG) (UC | DID: TOTH IN BO DT, TOM I TAL TER G/L) (UG/I | AL DT- DI- AA- AZINO IAL TOTA KG) (UG/ | n, TOM M
L TERI
L) (UG/M | ON, AL OT- DI AA- ELD IAL TOT KG) (UG) | RIN TOM
AL TEF
/L) (UG/
.000 | RIN,
TAL
BOT- END
MA- SULE
RIAL TOI
YKG) (UG | AN, TOM :
AL TER
G/L) (UG/ | AN, AL OT- MA- ENDR IAL TOT KG) (UG | AL TER
(L) (UG/ | AL
OT-
MA-
LIAL
(KG) | | 24
24 | 1.3 | .000
.000 | | 02
00 | .0 | .000
.000 | .0 | .000 | .0 | .000 | .0 | | DATE
JAN , 19 | | ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR,
TOTAL
(UG/L) | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | LINDANE
TOTAL
(UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION,
TOTAL
(UG/L) | THION,
TOTAL
IN BOT-
TOM MA-
TEPIAL
(UG/KG) | | | 24
24 | .00
.00 | | .000 | | .000 | | .000 | | .00 | | | | 24 | .00 | •0 | .000 | .0 | .000 | | .000 | | .00 | .0 | | | DATE
JAN , 19 | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | 24 | .00 | | .00 | | .00 | | .00 | | .00 | | | | 24
24 | .00
.00 | | .00
.00 | .0 | .00 | .0 | .00
.00 | .0 | .00
.00 | .0 | | | DATE
JAN , 19 | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOTAL
TRI -
THION
(UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2 ,4- D, | | | | | | 24
24 | .00 | | .0 | | •00 | | •37 | .00 | .00 | .00 | | | 24 | .00
.00 | | .0
.0 | .0 | .00
.00 | .0 |
.18 | | .01
.00 | .00 | | | TIME | | | | | | БОЛДІДИ М | ATERTAT. D | ARTICLE SI | TZE | | | | | AMETER (M | 9 41) 2 | 00 1.00 | 0.50 | 0.25 | | | 031 0.03 | | 0.004 | 0.002 | TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 294930093205400 CALCASIEU RIVER AT MILE 4.5, NEAR CAMERON, LA | DATE
MAR , 199
12DO | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
29900
29600 | PH
(UNITS)
7.8
7.8 | COLOR
(PLAT-
INUM-
COBALT
UNITS)
5
15 | TUR-
BID-
ITY
(NIU)
15
10 | SETTLE- ABLE MATTER (ML/L/ HR) <1.0 <1.0 | LEVEL)
(MG/L)
360 | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
230
230 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
720 | |---------------------------|---|---|---|---|---|---|---|---|--|--|---|---| | 12EF | | 34800 | 7.9 | 10 | 15 | 990 | 280 | 18000 | | | 270 | 860 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GFN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | | MAR , 1981
12 | 6200 | 200 | 74 | 1500 | 11000 | 32 | 27 | 9 | .12 | .01 | .22 | .28 | | 12 | 6300 | 200 | 74 | 1500 | 11000 | 47 | | 8 | | | .18 | .23 | | 12 | 7500 | 210 | 367 | 1600 | 13000 | 46 | 34 | 12 | 2 .08 | .05 | 1.1 | 1.40 | | DATE
MAR , 1981 | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVEI
(MG/L
AS P) | ARSENIC | SOLVED
(UG/L | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | | 12 | 1.3 | 1.2 | 1.5 | | 1.3 | 5.9 | .28 | .22 | 1 | . 1 | | 10 | | 12
12 | 1.2
17 |
19 | 1.4
18 | 316 |
19 |
85 | .39 | .24
.11 | 1 | |
6 | 10
10 | | DAT
MAR, | 1981 | YL- LIUM, REX
- FM I
VED TOM
/L TEI
BE) (UX | COV. TO
BOT- RE
MA- ER
RIAL (U
G/G) AS | ABLE SOI
G/L (UC
CD) AS | REMIUM FM IS- TOM IVED TE IVED (U CD) AS | COV. MI
BOT- TO
I MA- RE-
IRIAL EF
IG/G (U
ICD) AS | OTAL MINICOV- DIS
CABLE SO:
IG/L (UX
ICR) AS | RO- MI
UM, RI
S- FM
LVED TOI
G/L TI
CR) (I | IUM, MI
SCOV. HE
BOT- VAI
M MA- I
ERIAL (U
UG/G) AS | EXA- TO
ENT, RED
DIS. ER
UG/L (U
UG/CR) AS | G/L (UC
CU) AS | S-
LVED
S/L
CU) | | 12
12 | | 10
10 | | 0
0 | 0
1 | | 30
30 | 20
20 | | 0
0 | 10 | 15
4 | | 12 | | 10 | 0 | 0 | 1 | .02 | 40 | 20 | 4 | 0 | 8 | 2 | | DAT
MAR , | | OV.
OT- IRO
MA- DI
IAL SOI
/G (UK | ON, TO
IS- RE
LVED ER
G/L (U | ABLE SOI
G/L (UC | RE AD, FM IS- TOM EVED TE | XXXV. NE
BOT- TO
I MA- RE
CRIAL EF
IG/G (U | VTAL NES
COV- DI
CABLE SOI
G/L (UK | NGA- NI
SE, RI
IS- FM
LVED TO
G/L TI | ECOV. TO
BOT- RE
M MA- EF
ERIAL (U | OCOV- D
RABLE SO
NG/L (U | CURY FME
IS- TOM
LVED TEF
G/L (UC | OV.
OT-
MA-
LAL | | 12 | | | 100 | 4 | 0 | | 100 | 50 | | .4 | .4 | | | 12 | | 12 | 110 | 1
4 | 1
0 | 20 | 80
 | 30
3900 | 430 | .4 | .2 | 07 | | 12 | | EL,
AL NICI
OV- DIS
BLE SOI
/L (U | RE
KEL, FM
S- TOM
LVED TE
G/L (U | KEL,
COV.
BOT- SEI
MA- NIU
RIAL TOY | SE- NI
IM, I
IML SO
G/L (U | CLE- NICUM, TO
DIS- IN
DLVED TOM
DG/L TE | ILE-
IUM,
DTAL ZII
BOT- D
I MA- SO
RIAL (U | RI
NC, FM
IS- TO
LVED T
G/L (I | ERIAL TO
UG/G (M | TO
IN
ANIDE TOM
OTAL TER
MG/L (U | .3 NIDE TAL BOT- MA- IAL PHEN G/G CN) (UK | .07
Ools
G/L) | | MAR ,
12 | TA8T | 30 | 1 | | 0 | 1 | | 40 | | .01 | | 0 | #### TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER #### 294930093205400 CALCASIEU RIVER AT MILE 4.5, NEAR CAMERON, LA--CONTINUED | DATE
MAR , 194 | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
TOTAL
(UG/L) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
TOTAL
(UG/L) | | |-----------------------|---|---|--|--|---|--|--|---|--|---|--|---------------------------| | 12
12
12 | 0
0
 |
0 | <.10
<.10
<.10 |
3 | <.1
<.1
<.1 | <1.0 | <.001
<.001
<.001 | | <.1
<.1
.1 | <1.0 | <.001
<.001
<.001 | | | DATE
MAR , 19 | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
TOTAL
(UG/L) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | 12 | | <.001
<.001 | | <.001
<.001 | | <.01
<.01 | | <.001
<.001 | | <.000
<.000 | | | | 12 | .3 | <.001 | .1 | <.001 | | .07 | <.1 | <.001 | | <.00 | | | | T | TO
IN
DRIN, TOM
DTAL TE | ORIN, PTAL BOT- MA- ETHI RIAL TOI KKG) (UC | IN I
ON, TOM
CAL TE | TAL
BOT- HE
MA- CE
RIAL TO | CH
TO
EPTA- IN
HLOR, TOM
TTAL TE | BOT- CH
MA- EPC
RIAL TO | CH PTA- EPO LOR TOT XIDE BO TAL M | ATL. TO | TO
IN
DANE TOM
TAL TE | MA- TRIAL TO | MALA- THIOI TOTA: ALA- IN BO' HION, TOM MI OTAL TERLI UG/L) (UG/K) | N,
L
r-
A-
AL | | 12 | <.001
<.001 | « | .01
.01 | | <.001
<.001 | | <.001
<.001 | | <.001
<.001 | | <.01 | | | DATE MAR , 19 12 | <.01 | METH-
OXY-
CHIOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL PARA-THION, TOTAL (UG/L) | <.1 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) | <.001 METHYL TRI - THION, TOTAL (UG/L) <.01 | METHYL
TRI -
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX, TOTAL (UG/L) <.01 | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-THION, TOTAL (UG/L) | PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PER-
THANE
TOTAL
(UG/L) | .1 | | 12
12 | <.01
<.01 | <.1 | <.01
<.01 | | | DATE | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX -
APHENE,
TOTAL
(UG/L) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TOTAL
TRI-
THION
(UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
TOTAL
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | PHYTO-
PLANK-
TON
CHROMO | | | MAR , 19
12 | | <.1 | | <.01 | | <.01 | <.01 | <.01 | <.01 | 1.62 | .000 | | | 12
12 | <.10 | <.1
<.1 | <1.0 | <.01
<.01 | <.1 | <.01 | <.01 | <.01
<.01 | <.01
<.01 | 1.22 | .000 | | | DATE TIME | | | 2.00 | 1 00 | 0.50 | | OM MATERI | | | 0.000 | 0.004 0.00 | 0 000 | | MAR , 1981
12 0940 | | TER (MM)
BY WEIGHT | 2.00 | 1.00 | 0.50 0.2
99.0 | | 0.062
41.0 | 0.031
28.0 | 0.016
23.5 | | 0.004 0.00
8.5 17.5 | 2 0.001
16.5 | # TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295129093204500 CALCASIEU RIVER AT MILE 6.8, NEAR CAMERON, LA | 21D | 981
PSTREAM
OWNSTREAM
FFLUENT | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
34000
33800
39300 | PH (UNITS) 7.6 7.7 | COLOR
(PLAT-
INUM-
COBALIT
UNITS)
5
5
20 |
TUR-
BID-
ITY
(NTU)
8.0
15.0
30 | SETTLE-ABLE MATTER (ML/L/HR) <1.0 <1.0 1000 | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 410 310 1300 | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 52000 | HARD-
NESS
(MG/L
AS
CACO3)
4100
5400
4900 | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3)
4000
5300
4500 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
250
350
320 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
840
1100
990 | |----------------------------------|---|--|--|---|---|--|---|--|---|---|--|---| | DATE
JAN , 198 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GFN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | | 21
21
21 | 7700
6700
8600 | 230
220
230 | 97
98
326 | 2000
1900
1900 | 13000
13000
15000 | 76
172000
102 | 45
15 7000
71 | 31
15000
31 | .05
.04
.00 | .01
.01
.01 | .41
.35 | .53
.45 | | DATE | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | | JAN , 198
21
21
21 | .58
.49 | 1.3
1.2
20.0 | .99
.84
 |
1600 | 1.4
1.3
20 | 6.0
5.5
89 | .12
.11
.07 | .11
.04
.06 | 1
2
9 | 1
1
7 |
10 | 10
10
10 | | | | | | | | | | | | | | | | DATE | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RFCOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER, RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | | DATE
JAN , 198
21
21 | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L | MIUM,
DIS-
SOLVED
(UG/L | MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | MIUM,
HEXA-
VALENT,
DIS.
(UG/L | TOTAL
RFCOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RFCOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | | JAN , 198 21 21 21 | LIUM,
DIS-
SOLVED
(UG/L
AS BE):1
10
10
10
1RON,
DIS-
SOLVED
(UG/L
AS FE) | LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | TOTAL
RECOV-
ERABLE
(UG/L
AS
CD)
0
0 | DIS-
SOLVED
(UG/L
AS CD) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
50
40 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
20
30 | MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | TOTAL
RFCOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | | JAN , 198
21
21
21 | LIUM,
DIS-
SOLVED
(UG/L
AS BE):1
10
10
10
1RON,
DIS-
SOLVED
(UG/L
AS FE) | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 0 LEAD, TOTAL RECOV- ERABLE (UG/L | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L | DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 50 40 70 MANGA- NESE, DIS- SOLVED (UG/L | MIUM, DIS- SOLVED (UG/L AS CR) 20 30 60 MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL | MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 9 MERCURY TOTAL RECOV- ERABLE (UG/L | MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 MERCURY DIS- SOLVED (UG/L | TOTAL RFCOV- ERABLE (UG/L AS CU) 5 9 6 MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G | DIS-
SOLVED
(UG/L
AS CU)
3
3
4
NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 18 NICKEL, DIS- SOLVED (UG/L | | DATE JAN , 198 21 21 21 21 21 21 | ILIUM, DIS-SOLVED (UG/L AS BE) IRON, DIS-SOLVED (UG/L AS FE) | LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 5 13 5 EL, XVV. XVV. XVV. XVV. XVI. XVV. XVI. XVI. | TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L AS PB) 2 2 0 SEI LE- NIT M, DIS- SOLVED (UG/L (U | DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 20 SEL E- NIU M, TOT SS- IN E VED TOM | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 90 260 E- M, ZIN AL TOTI | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 50 40 70 MANGA- NESE, DIS- SOLVED (UG/L AS MN) 100 100 7300 CC, FAL ZIR COV- DISBLE SOI | MIUM, DIS- SOLVED (UG/L AS CR) 20 30 60 MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 210 REC VC, FM I | MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) .1 .7 CC, COV. EOT- CARE MA- ORGERIAL TOTAL | MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 MERCURY DIS- SOLVED (UG/L AS HG) .1 .0 .7 | TOTAL RFCOV- ERABLE (UG/L AS CU) 5 9 6 MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) 07 CYAN TOT IN E SIDE TOM FAL TERIAL (UG/C IN E | DIS- SOLVED (UG/L AS CU) 3 3 4 NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) 4 6 4 HIDE AL OOT- MA- AL PHEN | RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 18 NICKEL, DIS- SOLVED (UG/L AS NI) 0 0 1 | TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295129093204500 CALCASIEU RIVER AT MILE 6.8, NEAR CAMERON, LA--CONTINUED | DATE
JAN , 198:
21
21 | OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) 0 0 | OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG) 0 | | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L)
<.1
<.1 | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
TOTAL
(UG/L)
<.001
<.001
<.001 | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-DANE, TOTAL (UG/L) | CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0 | DDD, TOTAL (UG/L) <.001 <.001 <.001 | | |------------------------------------|--|--|---|--|---|---|--|---|--|---|--|---------------| | DATE
JAN , 198. | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
TOTAL
(UG/L) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | 21
21
21 |

<.1 | <.001
<.001
<.001 |
<.1 | <.001
<.001
<.001 | | <.01
<.01
<.10 |

<.1 | <.00
<.00
<.00 |
<.1 | <.001
<.001
<.001 | | | | DATE (U
JAN , 1981
21
21 | TO IN IN TOM TAL TE G/L) (UG | < | IN I
ON, TOM
PAL TEI
(/L) (UG, | TAL
BOT- HE
MA- CH
RIAL TO
/KG) (U | CH TO TO TTAL TE G/L) (UG <.001 <.001 | BOT- CH
MA- EPO
RIAL TO
/KG) (U | CH PTA- EPO LOR TOT XIDE BO TAL M G/L) (UG <.001 <.001 | ATL. TO
/KG) (U
 | TO IN | M MA- THERIAL TO | MALA- THION, TOTAL LA- IN BOT- HION, TOM MA- TERIAN IG/I.) (UG/KG) <.01 | | | DATE
JAN , 198
21
21 | <.01
<.01 | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL PARA-THION, TOTAL (UG/L) | BOTTOM
MATL.
(UG/KG) | <.001 METHYL TRI- THION, TOTAL (UG/L) <.01 <.01 | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX, TOTAL (UG/L) <.01 <.01 | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-THION, TOTAL (UG/L) | PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PER- THANE TOTAL (UG/L) <.01 <.01 | | | DATE JAN , 198 21 21 21 | PER- THANE IN BOTTOM MATERIL (UG/KG) 11 | TOX-APHENE, TOTAL (UG/L) | <.01 TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0 | <.1 TOTAL TRI- THION (UG/L) <.01 <.01 <.01 | <.01 TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 | 2,4-D,
TOTAL
(UG/L)
.02
.00 | <.01 2, 4-DP TOTAL (UG/L) .00 .00 <.01 | 2,4,5-T
TOTAL
(UG/L)
.00
.00 | <.01 SILVEX, TOTAL (UG/L) .00 .00 <.01 | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
5.94
2.63 | <.01 CHLOR-B PHYTO- PLANK- TON CHROMO FILIOROM (UG/L) .000 .000 | | | DATE TIME
JAN , 1981
21 1030 | DIAMETE
% FINER | ER (MM)
BY WEIGHT | 2.00 | | 0.50 0.2
9.9 99.0 | 5 0.125 | OM MATERI
0.062
91.0 | AL PARTIC
0.031
59.5 | 0.016 | | 0.004 0.002
5.0 19.0 | 0.001
14.0 | TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295825093200800 CALCASIEU RIVER AT MILE 14.75, NEAR HACKBERRY, LA | | 980
PSTREAM
OWNSTREA | | IC
-
T-
E | PH IN | UM- B
BALT I
ITS) (N | UR- A ID- MA IY (MI IU) H | DEN
TLE- CI
BLE IC
TTER (I
'L/ LE | MAND,
HEM-
CAL E
HIGH
VEL) I | C.O.D. TOTAL IN OUTTOM MA- TERIAL MG/KG) | HARD-NESS
(MG/L
AS
CACO3)
3200
3300 | HARD-
NFSS,
NONCAR-
BONATE
(MG/L
CACO3)
3100
3200 | CALCIUM
DIS-
SOLVEI
(MG/L
AS CA)
230
230 | DIS-
D SOLVED
(MG/L | |-------------------|---|--|---|--|---|--|---|--|--|--|--|--|--| | | FFLUENT | | 100 | 7.3 | 30 10 | | 00 | 280 | 41000 | 3900 | 3400 | 270 | 790 | | DATE
NOV, 198 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | DI
SOL
(MG | UM, LIN
S- FI
VED (M
/L A | ELD DI
G/L SC
S (M | FATE RI
S- DI
DLVED SO
IG/L (M | LO- RES
DE, AT
S- DEG
LVED SU
G/L PEN | TIDUE NO. 105 VA. C. T. S. S. S. S. S. DED PE | OLA-
ILE,
US- | COLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVE
(MG/L
AS N) | GFN, A AMMONIA DIS- D SOLVED | | 06
06 | 6400
6100
6800 | 26
22
24 | 0 | 92 1 | 200 11 | 000
000
000 | 16
41
40 | 12
33
35 | 4
8
5 | | .02 | | 9 .63 | | DATE
NOV , 198 | NITRO-
GEN,
ORGANIO
DIS-
SOLVEI
(MG/L
AS N) | GEN,
C MONI
ORGA
D TOI | AM- GEN
A + MON
NIC ORG
AL DI | I,AM- GEN
IIA + + C
ANIC TOI
S. BOI
IG/L (M | IN G
MAT TO
MG/KG (M | EN, G
TAL TO
G/L (M | SEN, PH
DTAL T
NG/L (| HOS- I
ORUS,
OTAL
MG/L
S P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | AM MOT | BERYL-
LIUM,
DIS-
L SOLVED
(UG/L | | 06
06 | 1.0
•7: | 1 1 | | 1.3
1.2 | | 2.2
1.8 | 9.8
8.0 | .07
.08
.80 | .04
.03
.08 | 1
1
25 | 1
1
12 | . - | 10 | | | L
R
FM
TO
T | ERYL- IUM, ECOV. BOT- M MA- ERIAL UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS
CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALEN
DIS-
(UG/I
AS CI | COPP
TOT
REC
ERA
L (UG | AL COPE
OV- DIS
BLE SOI
/L (UC | PER, FM
S- TOM
LVED TE | IMA-
TRIAL S
TG/G (| RON,
DIS-
OLVED
UG/L
S FE) | | 06
06 | • | | 1 | 0 |
40 | 40
30 | | | 0 | 9
6 | 4
5 | | 110
110 | | 06 | | 1 | ő | ő | | 40 | 14 | | 0 | 6 | 2 | | 14000 | | | T
R
E
(| EAD,
OTAL
ECOV-
RABLE
UG/L
S PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | | L MERC
V- DI
LE SOL
L (UG | URY FM I
S- TOM
WED TEI
JL (U | COV. NIC
BOT- TO
MA- RE
RIAL EF
G/G (U | COV- D
RABLE S
JG/L (| CKEL,
DIS-
DOLVED
(UG/L
S NI) | | 06
06 | | 2 | 5 | | 100 | 50 | | | .0 | .0 | | 7 | 3
4 | | Uh | | | | | | | | | | | | 7 | | | 06 | | 3
5 | 4
4 | 90 | 280
9200 | 220
6600 | 640 | | .0
.0 | .0
.0 | .09 | 6 | 3 | | 06 | NI R FM TO T (ATE A | 3 | 4 | | | | | ZINC
RECO
FM BO
TOM M
TERI
(UG/ | .0
,
V.
T- CARE
A- ORGA
AL TOI
G (MC | .0
OON,
NIC CYAI
TAL TO | .09 CYA TO NIDE TO TAL TEI G/L (1 | ANIDE
DTAL
BOT-
MA-
RIAL PE | | | 06 | NI R FM TO I ATE A 1980 | 3
5
CKEL,
ECOV.
1 BOT-
M MA-
ERIAL
UG/G | 4 SELE- NIUM, TOTAL (UG/L | 90
SELE-
NIUM,
DIS-
SOLVED
(UG/L | 9200 SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L | ZINC,
DIS-
SOLVEI
(UG/L | ZINC
RECO
FM BO
TOM M
TERI
(UG/
AS Z | .0 V. T- CARE A- ORGA AL TOI G (MC N) AS | .0
OON,
NIC CYAI
TAL TO | .09 CYA TO NIDE TO TAL TEI G/L (1 | ANIDE
DTAL
BOT-
MA-
RIAL PE | 3
HENOIS | TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295825093200800 CALCASIEU RIVER AT MILE 14.75, NEAR HACKBERRY, LA--CONTINUED | | DATE
NOV, 198 | | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
TOTAL
(UG/L) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
TOTAL
(UG/L) | | |-------------|------------------------------|--|---|--|--|---|--|--|---|--|---|--|---------------| | | 06
06 | 0 | | .00 | | .0
.0 | | .000 | | .0
.0 | | .000 | | | | 06 | | 3500 | <.1 | 3 | <.1 | <1.0 | <.001 | | <.1 | <1.0 | | | | | DATE
NOV , 198 | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
TOTAL
(UG/L) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI -
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
TOTAL
(UG/L) | TERIAL | | | | 06 | | .000 | | .00 | | .00 | | .000 | | .00 | | | | | 06
06 | .3 | .000
<.001 |
<.1 | .00.
.00.> | | .01
.06 |
<.1 | .001
:.001 | | .00
00.> | | | | | T | TO
IN
ORIN, TOM
OTAL TE | ORIN,
OTAL
BOT-
I MA- ETHI
CRIAL TOI | IN I
ON, TOM
TEL TE | TAL
BOT- H
MA- C
RIAL T | CH
TC
EPTA- IN
HLOR, TOM
OTAL TE | BOT- CH
IMA- EPC
ERIAL TO | CH
PTA- EPO
LOR TOT
KIDE BO
TAL M | ATL. TO | T
IN
IDANE TO
TAL | M MA- I
ERIAL I | MALA- THION TOTAL HION, TOM MA TOTAL TERLA (UG/L) (UG/KG | L | | 06.
06. | | .000 | | .00 | | .000
.000 | | .000 | | .000 | | | . - | | 06 | | <.001 | | :.01 | <.1 | <.001 | <.1 | <.001 | <.1 | <.001 | <.1 | <.01 <. | | | | DATE
NOV , 19
06
06 | MEIH-
CXY-
CHIOR,
TOTAL
(UG/L)
80
.00
.00 | MEIH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL
(UG/L)
.00
.00 | METHYL PARA-THION, TOT. IN BOTTOM MATL. (UG/KG) | THION,
TOTAL
(UG/L)
.00 | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) <-1 | MIREX,
TOTAL
(UG/L)
.00
.00 | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-THION, TOTAL (UG/L) .00 .00 <.01 | | PER-
THANE
TOTAL
(UG/L) | | | | DATE
NOV , 19
06
06 | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG)
80 | TOX-APHENE, TOTAL (UG/L) .0 .0 <.1 | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0 | TOTAL
TRI-
THION
(UG/L)
.00 | | 2,4-D,
TOTAL
(UG/L)
.06
.04 | 2, 4-DP
TOTAL
(UG/L)
.00
.00 | 2,4,5-T
TOTAL
(UG/L)
.00
.00 | SILVEX,
TOTAL
(UG/L)
.00
.00 | FILUORON
(UG/L) | A CHLOR-B - PHYTO PLANK- TON CHROMO (UG/L) 0 .000 | | | DATE | TIME | ; | | | | | BOTT | OM MATERI | AL PARTIC | LE SIZE | | | | | NOV ,
06 | 1980 | DIAMETI | ER (MM)
BY WEIGHT | 2.00 | 1.00 | 0.50 0.3 | 25 0.125 | | 0.031
90.5 | 0.016 | | 0.004 0.002
54.5 55.0 | 0.001
46.5 | ## TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295836093200700 CALCASIEU RIVER AT MILE 15.0, NEAR HACKBERRY, LA | DATE CCT , 198 02UPS 02EFF | STREAM
INSTREAM | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS)
32100
32300
34000 | PH (UNITS) 7.5 7.8 7.2 | COLOR
(PLAT-
INUM-
COBALT
UNITS)
10
40
40 | TUR-
BID-
ITY
(NTU)
15
10 | | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
270
250
660 | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 27000 | HARD-
NESS
(MG/L
AS
CACO3)
3900
4000
4300 | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3)
3800
3900
3900 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
260
260
280 | |----------------------------|--|--|---|---|---|---|--|--|---|--|---| | DATE
CCT , 1980 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS- | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 02
02
02 | 780
820
880 | 6600
6600
7200 | 260
240
210 | 102
105
447 | 1600
1600
1500 | 12000 | 38
1960
23 7 000 | 1940 | 25
20
15400 | .05
.00
.00 | | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | | OCT , 1980
02
02 | .05
.00
.00 | .09
.06
1.3 | .08
.04
1.3 |
211 | 1.2
.91
19.0 | 1.1
.96
21.0 | 1.3
.97
20.0 | 1.2
1.0
22.0 |
15000 | 1.3
.97
20 | .11
.08
.09 | | DATE | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) |
CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | OZ
02
02 | .07
.06
.01 | 1
3
6 | 1
1
5 |
1 | 10
0
10 | 0
0
10 |
1 | 0
0
0 | 0
0
0 |

.13 | 50
20 | | DATE
CCT , 1980 | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVEI
(UG/L
AS CU) | TOM MA-
TERIAL
(UG/G | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NFSE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | 02
02
02 | 50
0
30 |
28 | 0
0
0 | 5
12
20 | 2 | !
2
2 21 | 100 | 4
3
6 | 2
0
2 |
20 | 110
80
5800 | | DA
CCT , | NE
D
SO
(U
TE AS | NGA- NE
SE, RE
IS- FM
LVED TOM
G/L TE | COV. TO
BOT- RE
IMA- ER
RIAL (U | COV- I
ABLE SC
IG/L (U | CURY FN
OIS- TO
OLVED T
OG/L | M BOT- I
OM MA- F
TERIAL F
(UG/G (| ECOV- DI
RABLE SO
UG/L (U | RECKEL, FM IS- TOM DIVED TE JG/L (U | MA- NI
RIAL TO
G/G (U | LE- NI
UM, D
TAL SO
G/L (U | CLE-
UM,
DIS-
DIVED
G/L
SE) | | 02
02
02 | • | 150
30
5700 |

640 | .0
.0 | .1
.1
.0 |

.05 | 7
3
6 | 6
0
3 |

20 | 0
0
0 | 0
0
0 | ### TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295836093200700 CALCASIEU RIVER AT MILE 15.0, NEAR HACKBERRY, LA--CONTINUED | | SELE-
NIUM,
TOTAL
IN BOT-
IOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS (UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | |--|---|--|---|--|--|--|---|--|---|---|--------------------------------| | 02
02
02 | 0 | 20
30
50 | 20
30
40 |

65 | 7.0
6.6
18 | .00
.00 |
0 | 0
0
1 |
 | 1000 | | | PCB,
TOTAI
DATE (UG/L)
CCT , 1980 |) (UG/ | AL LENI OT- POLY MA- CHIC IAL TOTA (KG) (UG/) | A- PCN ES, TOTA Y- IN BC DR. TOM M AL TERI L) (UG/F | L
VT-
VA- ALDF
VAL TOT | AL TER
(/L) (UG/ | AL
OT-CHI
MA-DAI
CIAL TO: | DA
TO
LOR- IN
NE, TOM
TAL TE
/L) (UG | IOR-
NE,
TAL
BOT-
MA- DD
RIAL TOT
/KG) (UG | AL TERI | AL
OT-
MA- DD
IAL TOT
KG) (UG | AL
/L) | | 02
02
02 | 0 | | .0
.0
.0 | .0 | .000
.000 | .0 | .0
.0 | 0.0 | .000
.000 | | .000
.000
.000 | | DDE.
TOTAI
IN BO'
TOM M
TERL.
DATE (UG/KI
CCT , 1980 | ,
L
T-
A- DE
AL TOI | DD
TOTI
IN BO | I,
AL
OT- DI-
MA- AZINC
IAL TOTA | DI
AZIN
TO'I
- IN F
DN, TOM
AL TEI | -
ION,
FAL
BOT- DI
MA- ELE
RIAL TOI | D:
ELDI
TO'
I- IN I
PRIN TOM | I-
RIN,
TAL
BOT- EN
MA- SUI
RIAL TO | END
SULF
TOI
DO- IN E
FAN, TOM | O-
'AN,
'AL
'OT-
MA- ENDR
IIAL TOT | ENDR
TOT
IN B
IN, TOM
AL TER | IN,
AL
OT-
MA-
IAL | | 02 |
 | .000 | | .00
.00 | | .000 | | .000 | | .000 | | | | .0 | .000 | | .04 | .0 | .000 | .0 | .000 | .0 | .000 | .0 | | DATE OCT , 1980 02 02 | ETHION, TOTAL (UG/L) .00 .00 | ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)0 | HEPTA-CHLOR, TOTAL (UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) |) | LINDANE
TOTAL
(UG/L) | TERIAL
(UG/KG)
00 | MALA-THION, TOTAL (UG/L) | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | | | DATE
CCT , 1980 | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL
TRI -
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | ī | TERIAL | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | - , | | 02
02 | .00
.00 | | .00 | | .00 | | .00 |) | .00 |
 | | | DATE | | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-APHENE, TOTAL (UG/L) | TOXA-PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) | TOTAL TRI- THION (UG/L) | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D, TOTAL (UG/L) | , 2, 4-DP
TOTAL
(UG/L) | TOTAL
(UG/L) | SILVEX, TOTAL (UG/L) | | | 02
02
02 | .00
.00 | .00 | .0
.0
.0 |

.0 | .00
.00 | | 09 | .00 | .00
.00
.00 | .00
.00
.00 | | | TE TIME | METER (MI | M) 2. | 00 1.00 | | 0.25 | BOTTOM M
0.125 0 | MATERIAL I | PARTICLE S | IZE
16 0.008 | | 0.002
56.0 4 | HYDROLOGIC DATA--Continued Part B: Elutriate Data (Tables 5-12) ### TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET ### 292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |----------|--|---|--|--|---|---|--|---|---|---|---| | 10-30-79 | 1145 | 32000 | 8.4 | 10 | <1.0 | 51 | 26000 | 1800 | 1700 | 240 | 290 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FID
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | 10-30-79 | 7500 | 330 | 120 | 2 | 98 | 1700 | 12000 | 32 | 26 | 6 | .66 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO
GEN,
AMMONI
TOTAL
(MG/L
AS N) | AMMONIA
A DIS-
SOLVE | GEN,NH
A TOTAL
IN BOT
D MAT. | 4 NITRO
GEN,
ORGANI
TOTAL | ORGAN
C DIS
SOLV
(MG/ | GEN,AM C MONIA ORGANI TOTAL C (MG/I | I- GEN,
+ MONI
C ORGA
DIS | AM- GEN,
IA + + OI
INIC TOT
IS BOT
IS/L (MI | RG.
IN
MAT
G/KG | | | 10-30-79 | .01 | .10 | .01 | 42 | .60 | •60 | .70 | .6 | 51 48 | 310 | | | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | TOM MA- | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
FRABLE
(UG/L
AS CD) | | 10-30-79 | 1.4 | .16 | ە.0 | 2 | 2 | 0 | 6 | 0 | 0 | 0 | 0 | | DATE | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) |
COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | 10-30-79 | 0 | 0 | .16 | 20 | 10 | 10 | 9 | 0 | 0 | 0 | 0 | | I | RE
FM
TON
TI
(U | ima- d
Trial so
NG/G (U | ON, TO
IS- RE
LVED ER
G/L (U | AD, S TAL PE COV- RE ABLE ER G/L (U | COV- I
ABLE SO
G/L (U | RAD, FM
DIS- TO
DLVED T
DG/L (| ECOV. NE
BOT- TO
M MA- RE
ERIAL EI
UG/G (U | SE, NE
TAL S
COV- PE
RABLE RE
IG/L (U | SUS- NI
ENDED I
ECOV. SO
JG/L (1 | ANGA- NE
ESE, RE
DIS- FM
DLVED TON
UG/L TE | NGA-
SE,
COV.
BOT-
I MA-
IRIAL
IG/G) | | 10-3 | 10-79 | 4 | 100 | 0 | 0 | 0 | 20 | 30 | 10 | 20 | 570 | | | TC
RI
EE
(U
(DATE AS | DOOV- D
RABLE SO
DG/L (U
S HG) AS | RECURY FM: IS- TOM LVED TE G/L (U HG) AS | BOT- TO
MA- RE
RIAL ER
G/G (U
HG) AS | COV- DI
ABLE SC
G/L (U
NI) AS | REKEL, FM
SS- TO
DLVED T
IG/L (
NI) A | M MA- NI
ERIAL TO
UG/G (U
S NI) AS | NICLE- S TUM, PI TTAL TO JG/L (U S SE) AS | SUS- NI
ENDED I
DTAL SO
UG/L (U
S SE) AS | ELE- NI IUM, TO DIS- IN DLVED TON DG/L TE S SE) (U | CLE-
UM,
TAL
BOT-
I MA-
CRIAL
IG/G) | | 10-3 | 30-79 | .0 | .1 | .03 | 0 | 2 | 16 | 0 | 0 | 0 | 0 | ### TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET ### 292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA--CONTINUED | DA' | ZIN
TOTE
RECO
ERAI
(UG,
TE AS | AL PENDI
OV- RECOV
BLE ERABI
/L (UG/1 | ED ZINC
7- DIS
LE SOLV
L (UG/ | 5- TOM M
MED TERM
ML (UG/ | VT- CARBO
NA- ORGAN
CAL TOTA
'G (MG) | NIC CYANI
AL TOTA
/L (MG, | AL TERIA
/L (UG, | AL
OT-
MA-
AL PHENO
/G | METT | SE, GREAS AL TOT. DV. BOT N JI- GRAV RIC METI | SE,
IN
MAT
/I-
RIC | | |----------------------|---|---|---|--|--|---|--|--|--|---|---|---| | 10-30 | -79 | 10 10 |) | 0 4 | 10 7.6 | 5 .00 | o : | 1 4 | |) (|) | | | DATE | OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L) | ,
PCB, | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | DIS-
SOLVED | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 10-30-79
10-30-79 | 510 |
•0 | .00 | 3 | .0 | .00 | .0 | .00 | .00 | .0
 | .00 | .00 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 10-30-79
10-30-79 | 10 | .00 | .00 | .0
 | •00 | .00 | .0
 | .00 | .00 | .0 |
.01 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI -
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL
(UG/L) | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ETHION
DIS-
SOLVED
(UG/L) | | 10-30-79
10-30-79 | .00 | •0
 | .00 | .00 | .0 | .000 | •00 | •0
 | .00 | .00 | .0 | .00 | | DATE | ETHION
TOTAL
(UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOX IDE
TOTAL
(UG/L) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 10-30-79
10-30-79 | •00
 | •0
 | .00 | .00 | .0 | .00 | .00 | .0 | .00 | .00 | .0 | .00 | | DATE | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
TRI-
THION,
DIS-
SOLVED
(UG/L) | METHYL TRI- THION, TOTAL (UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
DIS-
SOLVED
(UG/L) | | 10-30-79
10-30-79 | •00 | .0
 | .00 | .00 | .0
 | .00 | .00
 | .0
 | .00 | .00 | .0 | .00 | ### TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET ### 292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA--CONTINUED ### NATIVE SAMPLE TOXA- PARA- | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | METHYL
TRI-
THION,
DIS-
SOLVED
(UG/L) | | |---------------------|---------------------------|--|---|------------------------------------|---|--|----------------------------------|---|---|------------------------------------|---|--|---------------| | 10-30-79 | .00 | .0 | | .00 | .0 | | .00 | .00 | | .00 | .0 | | | | 10-30-79 | | | .00 | | | .00 | | | .00 | | | .00 | | | | | TRI -
THION,
TOTAL | | | | | | | | | CHLOR-A
PHYTO-
PLANK- | CHLOR-B
PHYTO-
PLANK- | | | | TOTAL
TRI- | IN BOT-
TOM MA- | 2,4-D,
DIS- | 2,4-D, | 2,4-DP
DIS- | 2, 4-DP | 2,4,5-T
DIS- | 2,4,5-T | SILVEX,
DIS- | SILVEX, | TON
CHROMO | TON
CHROMO | | | DATE | THION
(UG/L) | TERIAL
(UG/KG) | SOLVED
(UG/L) | TOTAL
(UG/L) | SOLVED
(UG/L) | TOTAL
(UG/L) | SOLVED
(UG/L) | TOTAL
(UG/L) | SOLVED
(UG/L) | TOTAL
(UG/L) | FLUOROM
(UG/L) | FLUOROM
(UG/L) | I | | | | | (00) 11) | | (00) 2) | | (00, 2, | | (00, 2, | | | | | | 10-30-79 | .00 | .0 | | .01 | | .00 | | .00 | | .00 | 5.61 | | | | 10-30-79
DATE TI |
Æ | | .01 | | •00. |
: | .00
BOTTOM MAT | TERIAL PAF | .00 | Œ | | | | | ОТ, 1979
30 114 | | METER (MM)
NER BY WEIG | 2.00
GHT | 1.00 | 0.50 | 0.25 0
98 | | 062 0.03
0 48.5 | 34.0 | 0.008
27.0 | 0.004
24.5 | 0.002
22.5 | 0.001
20.0 | ### ELUTRIATE SAMPLE | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | ORGANIC | ARSENI | DIS-
SOLVED
(UG/L | CADMIU
DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVEI
(UG/L | COPPE
DIS-
SOLVE
(UG/L | D
D | |------------------|---|--|--|---|---|--|---|-------------------------------------|--|--|---|--| | 10-30-79 | 1145 | 510 | 630 | 3.9 | .00 | 3.8 | 3 | 0 | 1 | 16 | 0 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVEL
(UG/L
AS MN) | MERCUR
DIS-
SOLVED
(UG/L | DIS- | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | (MG/L | PHENOIS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) |
CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 10-30-79 | 0 | 690 | .1 | 0 | 0 | 20 | .00 | 2 | .0 | .0 | .000 | •0 | | DATE
10-30-79 | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT,
DIS-
SOLVED
(UG/L) | DI- AZINON, DIS- SOLVED (UG/L) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX, DIS- SOLVED (UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER- | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | .00 TRI - THION DIS- SOLVED (UG/L) | 2,4-D,
DIS-
SOLVED
(UG/L) | .000 2, 4-DP DIS- SOLVED (UG/L) | .000
2,4,5-T
DIS-
SOLVED
(UG/L) | .00
SILVEX,
DIS-
SOLVED
(UG/L) | | 10-30-79 | .00 | .00 | .00 | .00 | .00 | .00 | .0 | .00 | .02 | .00 | .00 | .00 | TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS 285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURFWOOD, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |----------|---|--|--|---|--|--|--|--|---|--|---|---| | 10-24-79 | 1200 | 27900 | 8.3 | 10 | <1.0 | 410 | 32000 | 3500 | 3400 | 220 | 720 | 5400 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | | 10-24-79 | 280 | 136 | 0 | 112 | 1500 | 9900 | 30 | 18 | 12 | .44 | .01 | | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | | | 10-24-79 | .06 | .00 | 37 | .94 | .74 | 1.0 | .74 | 4520 | 1.5 | .09 | .06 | | | DATE | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
EPABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RFCOV.
(UG/L
AS CR) | | 10-24-79 | 2 | 1 | 1 | 9 | 10 | 0 | 0 | 0 | 1 | .17 | 10 | 0 | | DATE | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TFRIAL
(UG/G
AS PB) | | 10-24-79 | 10 | 10 | 0 | 0 | 0 | 0 | 14 | 90 | 0 | 0 | 0 | 20 | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NTUM,
SUS-
PENDED
TOTAL
(UG/L
AS SF) | | 10-24-79 | 40 | 0 | 40 | 500 | .0 | .0 | .05 | 0 | 3 | 15 | 0 | 0 | | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS (UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | 10-24-79 | 0 | 1 | 10 | 0 | 10 | 45 | 5.0 | .00 | 90 | 5 | 0 | 0 | # TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS 285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURRWOOD, LA--CONTINUED NATIVE SAMPLE OXYGEN NAPH-DEMAND. PCB. ALDRIN, THA-PCN. CHFM-TOTAL LENES, TOTAL TOTAL CHTOR-ICAL PCB, IN BOT-PCN, POLY-IN BOT-ALDRIN. IN BOT-DANE, CHLOR-(HIGH DIS-PCB, TOM MA-DIS-CHLOR. TOM MA-ALDRIN, DANE, DIS-TOM MA-DIS-LEVEL) SOLVED TOTAL TERIAL SOLVED SOLVED TOTAL TERIAL TOTAL TERIAL SOLVED TOTAL DATE (MG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/KG) (UG/L) 10-24-79 .00 26 .00 .000 .0 ٠.0 . 0 10-24-79 430 --CHLOR-DANE, DDD, DDE, DDT, TOTAL TOTAL TOTAL TOTAL DI-IN BOT-DDD, IN BOT-DDE, IN BOT DDT, IN BOT-AZINON, TOM MA-DIS-DDD. DIS-DDE. DIS-DDT. TOM MA-DIS-TOM MA-TOM MA-SOLVED SOLVED SOLVED TERIAL TOTAL TERIAL TOTAL TERIAL TOTAL TERIAL SOLVED (UG/L) (UG/L) DATE (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) 10-24-79 .000 .000 .000 .0 6 2.0 6.3 --10-24-79 DT-DT-ENDO-ELDRIN. ENDRIN, AZTNON. SHEAN. DT-ENDO-TOTAL. TOTAT. TOTAL. TOTAL. ENDO-ENDRIN. ETHION **ELDRIN** SULFAN, DT-DT-IN BOT-IN BOT-IN BOT-TN BOT-ENDRIN. FLORIN SULFAN. TOM MA-AZTNON. TOM MA-TOM MA-DTS-DIS-TOM MA-DIS-DIS-SOLVED SOLVED TERIAL SOLVED TOTAL TERJAL SOLVED TOTAT. TERTAL. TOTAL. TERTAL. TOTAT. DATE (UG/KG) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/I.) (UG/KG) (UG/L) (UG/L) (UG/L) (DG/L) (UG/L) .000 .0 .00 .0 10-24-79 .000 .00 .0 .5 10-24-79 нерта-HEPTA-ETHION, CHLOR, HEPTA-CHLOR LINDANE HEPTA-TOTAL MALA-TOTAL HEPTA-TOTAL CHLOR **EPOXIDE** IN BOT-CHLOR LINDANE IN BOT-THION CHLOR, HEPTA-IN BOT-EPOXIDE TOT. IN ETHION, TOM MA-DIS-CHLOR, TOM MA-DIS-EPOXIDE BOTTOM DIS-LINDANE TOM MA-DIS-TOTAL TERIAL SOLVED TOTAL TERIAL SOLVED TOTAL MATL. SOLVED TOTAL TERIAL SOLVED DATE (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) 10-24-79 .00 .0 .000 .0 .000 .0 .000 .0 10-24-79 MALA-METH-METHYT. METHYL METH-THION. METHYT. METHYT. OXY-PARA-- זמי METH-METHYL METHYL TOTAL OXY-CHLOR. PARA-THTON. TRI-THTON. MIREX, MALA-CHTOR. IN BOT-OXY-TOT. IN THION. PARA-TOT. IN THTON. TRT-TOT. IN BOTTOM BOTTOM BOTTOM THION. TOM MA-CHLOR. THION. THION. DIS-DIS-DIS-DIS-SOLVED SOLVED MATT. SOLVED TOTAL. MATT. TOTAL TERIAL. SOLVED TOTAL MATT. TOTAL. DATE (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) .00 __ 10-24-79 .00 .0 .00 .0 .00 .0 .0 10-24-79 TOXA-PARA-MIREX, THION. PER-PHENE. TOTAL PARA-TOTAL PER-THANE TOX-TOTAL TRI-IN BOT-THION, PARA-IN BOT-THANE, PER-IN APHENE, TOX-IN BOT-THION, APHENE, MIREX. TOM MA-DTS-THION. TOM MA-THANE TOM MA-DTS-DIS-BOTTOM DTS-TOTAL. SOLVED TERTAL. TOTAL TERTAL SOLVED TOTAL MATERIL SOLVED
TOTAL TERIAL SOLVED (UG/L) (UG/L) .00 (UG/KG) .00 (UG/L) (UG/L) .0 (UG/KG) .0 (UG/L) DATE 10-24-79 10-24-79 (UG/L) .00 (UG/KG) .0 (UG/L) (UG/L) .00 (UG/KG) .0 ### TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS ### 285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURRWOOD, LA--CONTINUED | DATE | TOTAL TRI- THION (UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-D
TOTAL
(UG/L | P T | ,5-T
DIS-
DIVED
JG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FILUOROM (UG/L) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUORO (UG/L | м | | |------------|--|--|------------------------------------|---------------------------|------------------------------------|--------------------------|-------|--------------------------------|----------------------------|-------------------------------------|----------------------------|--|---|-------|--| | 10-24-79 | .00 | .0 | | .01 | | .00 | ı | | .00 | | .00 | 2.55 | .000 | | | | 10-24-79 | | | .01 | | .00 | | | .00 | | .00 | | | | | | | DATE T | | | | | | | | | | | | | | | | | OCT , 1979 | DIA | METER (MM) | 2.00 | 1.00 | 0.50 | 0.25 | 0.125 | 0.06 | 2 0.03 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | | | 24 | 30 % FIN | ER BY WEIG | SHT | | | 99.0 | 98.5 | 94.5 | 74.0 | 55.0 | 43.0 | 33.5 | 29.5 | 28.5 | | | | 24 30 % FINER BY WEIGHT 99.0 98.5 94.5 74.0 55.0 43.0 33.5 29.5 28.5 ELUTRIATE SAMPLE | | | | | | | | | | | | | | | | DATE | M
(M | TTLE- C
ABLE I
ATTER H
L/L/ LE | HEM- AMM
CAL I
IGH SC
VEL (M | DIS-
DLVED
MG/L | RGANIC I | GEN,AM-
MONIA + A
ORGANIC
DIS.
(MG/L
AS N) | ARSENIC
DIS-
SOLVED
(UG/L | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | LFAD,
DIS-
SOLVED
(UG/L
AS PB) | |------------------|--|--|---|---|--|---|---|--|---|---|---|--| | 10-24-79 | 1200 | 530 | 540 2 | 2.2 | .30 | 2.5 | 3 | 0 | 0 | 12 | 0 | 0 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | DDD,
DIS-
SOLVED
(UG/L) | | 10-24-79 | 2200 | .1 | 3 | 0 | 20 | 0.00 | 14 | .0 | .0 | .000 | .0 | .000 | | | DDE, | DDT, | DI-
AZINON, | DI-
ELDRIN | ENDO-
SULFAN, | ENDRIN, | ETHION | HEPTA-
CHLOR- | | LINDANE | MALA-
THION | METH-
OXY-
CHLOR, | | DATE | DIS-
SOLVED
(UG/L) DIS-
SOLVEI
(UG/L) | DIS-
SOLVED | DIS-
SOLVEI
(UG/L) | DIS-
SOLVE | | | DATE
10-24-79 | SOLVED
(UG/L) | DIS-
SOLVED | DIS-
SOLVED | SOLVED | SOLVED | SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVET | DIS-
SOLVE | SOLVED | | | SOLVED
(UG/L) | DIS- SOLVED (UG/L) .000 METHYI TRI- THION, DIS- SOLVEI | DIS-
SOLVED
(UG/L)
.02
MIREX,
DIS-
SOLVED | SOLVED
(UG/L) | SOLVED (UG/L) .000 PER THAN DIS ED SOLV | SOLVED (UG/L) .000 - TOX E APHEN - DIS ED SOLV | DIS-SOLWED (UG/L) .00 - TRI-E, THION-DIS-ED SOLWI | DIS-SOLVEI (UG/L) .000 - N 2,4 DIS ED SOLVEI | DIS- DIS- DIVED (UG/L) .000 -D, 2, 4-1 -D DIS- DIS- DIS- SOLVED SOLVED | DIS-SOLVEI (UG/L) .000 OP 2,4,5 DIS SOLVEI | DIS- D SOLVER O (UG/L) O .00 5-T SILU S- DIS- VED SOLUTION | SOLVED
(UG/L)
.00
VEX,
S-
VED | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, IA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |---------|--|--|--|--|---|--|---|---|---|---|---| | 7-17-79 | 1110 | 10800 | 7.5 | 40 | <1.0 | 40 | 140000 | 1100 | 1000 | 84 | 210 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FILD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
CEN,
NITRATE
TOTAL
(MG/L
AS N) | | 7-17-79 | 1900 | 85 | 80 | 0 | 66 | 450 | 3600 | 15 | 5 | 10 | .00 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | IN BOT. | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC | MONIA | M- GEN,N
+ + ORG
IC TOT I
BOT N
L (MG/ | IH4
S.
IN
NAT
YKG | | | 7-17-79 | .02 | .10 | .10 | 57 | 1.2 | 1.1 | 1.3 | 1.2 | 2980 |) | | | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | | 7-17-79 | 1.3 | .07 | .03 | 2 | 2 | 1 | 6 | <10 | <10 | 0 | <2 | | DATE | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | 7-17-79 | 0 | <2 | .28 | <20 | 0 | <20 | 10 | 0 | 2 | 0 | 2 | | DATE | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
FRABLE
(UG/L
AS HG) | | 7-17-79 | 12 | 70 | 5 | 5 | ND | 10 | 140 | 140 | <10 | 260 | <.1 | | | D
SC
(U
DATE AS | RECURY FM DIS-TOM LIVED TE G/L (U HG) AS | BOT- TO
MA- RE
RIAL ER
G/G (U | KEL, S
TAL PE
COV- RE
ABLE ER
G/L (U | COV- DI
ABLE SO
G/L (U | RE
KEL, FM
S- TOM
LVED TE
G/L (U | IMA- NI
RIAL TO
KG/G (U | NI
LE- S
UM, PE
TAL TO
G/L (U | SUS- N.
ENDED I
PTAL SO
IG/L (1 | ELE- NI
TUM, TO
DIS- IN
DLVED TOM
UG/L TE | CLE-
CUM,
OTAL
BOT-
I MA-
CRIAL
UG/G) | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO
VENICE HURRICANE PROTECTION PROJECT, LA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, LA--CONTINUED | E | TC
RI
EI
(1 | OTAL PER
OCOV- REX
RABLE ERV
UG/L (UX | IS-
VIDED ZIN
XOV- DI
ABLE SOI
G/L (UC | IC, FM E
S- TOM
EVED TEE
E/L (UC | COV.
BOT- CAR
MA- ORG
RIAL TO
G/G (M | TAL TO:
G/L (M | TO
IN:
VIDE TOM
TAL TER
G/L (U | NIDE
TAL
BOT-
MA-
IAL PHEI
G/G
CN) (UK | GREA
TO:
REX
NOLS GRA
MET | ASE, GREATER TOT COV. BOT AVI- GRAFIC ME | AND ASE, IN MAT AVI- TRIC /KG) | | |---------------------------------------|---|--|---|--|---|---|---|---|---|---|---|--| | 7-1 | .7-79 | 40 | 10 | 30 | 45 | 12 | .00 | 0 | 4 | 0 | 0 | | | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHI.OR-
DANE,
TOTAL
(UG/L) | | 7 - 17-79
7 - 17-79 | 110 | .0 | .00 | 0 | .0 | .00 | .0 | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17-79
7-17-79 | 3.0 | .000 | .000 | .0 |
•000 | .000 | .9
 | .000 | .000 | .0 |
•06 | | | | | DI- | | | | | | | | | | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
TOTAL | TOM MA- | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO- | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ETHION
DIS-
SOLVED
(UG/L) | | DATE
7-17-79
7-17-79 | AZINON,
TOTAL | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL | ELDRIN
DIS-
SOLVED | DI-
ELDRIN
TOTAL | ELDRIN, TOTAL IN BOT- IOM MA- TERIAL | SULFAN,
DIS-
SOLVED | ENDO-
SULFAN,
TOTAL | SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL | DIS- | ENDRIN,
TOTAL | TOTAL
IN BOT-
TOM MA-
TERIAL | DIS-
SOLVED | | 7-17-79 | AZINON,
TOTAL
(UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- | ELDRIN
DIS-
SOLVED
(UG/L) | DI - ELDRIN 'TOTAL (UG/L) | ELDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG) | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- | ENDO-
SULFAN,
TOTAL
(UG/L)
.000
 | SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 HEPTA- CHLOR EFOXIDE TOT. IN BOTTOM MATL. | DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- | DIS-SOLVED (UG/L)00 MALA THION - DIS- L SOLVED | | 7-17-79
7-17-79 | AZINON, TOTAL (UG/L) .00 ETHION TOTAL | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHIOR, DIS- SOLVED | DI - ELDRIN TOTAL (UG/L) .000 HEPTA- CHIOR, TOTAL | ELDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG) .0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHIOR EPOXIDE DIS- SOLVED | ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L) | SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) | DIS- SOLVED (UG/L)00 LINDANF DIS- SOLVED | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS-SOLVED (UG/L)00 MALA THION - DIS- L SOLVED | | 7-17-79
7-17-79
DATE
7-17-79 | AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) O ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) O MALA- THION, TOTAL IN BOT- TOTAL | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS- | DI- ELDRIN TOTAL (UG/L) .000 HEPTA- CHIOR, TOTAL (UG/L) .000 | ELDRIN, TOTAL IN BOT- IOM MA- TERTAL (UG/KG) -0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L) 000 METHYL PARA- I THION, I DIS- SOLVED SOLVED | ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L) | SULFAN, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) .0 .0 .1 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .1 HETHYL PARA- THION, TOT. IN | DIS- SOLVED (UG/L) 00 LINDANF DIS- SOLVED (UG/L) 000 METHYL TRI- THION, | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS-SOLVED (UG/L) 00 MALA-THION DIS-SOLVED (UG/L) | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, LA--CONTINUED ### NATIVE SAMPLE | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TERIAL | TRI-
THION,
DIS-
SOLVED | |--------------------------------------|---|---|---|---|---|--|---|---|--|--|-------------------------------------|--| | 7-17-79
7-17-79 | .00
 | .0 | .00 | .00 | .0
 | .00 | .00 | •00
 | .0 | .0 | .0 | .00 | | DATE | TOTAL
TRI -
THION
(UG/L) | TRI-
THION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | - 2,4-D,
- DIS-
L SOLVEI | 2,4-D
TOTAL | SOLVED | 2, 4 | L SOI | ,5-T
IS- 2,4,
LWED TOT
G/L) (UG | AL SOLV | S- SILVED TO | TAL FLU | IO- PHYTO-
NK- PLANK-
N TON | | 7-17 <i>-</i> 79
7-17 <i>-</i> 79 | •00 | .0 | .01 | .00 | .00 | • | 00 | | 00 |
00 | .00 2 | 7.3 2.60 | | , 2, 1,5 | | | •01 | | •00 | | · | •00 | • | • | | | | | | | | | E | LUTRIATE | SAMPLE | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS- | ARSENIO
DIS-
ED SOLVED
L (UG/L | BERYL C LIUM, DIS- SOLVED (UG/L AS BE) | CADMIU
DIS- | DIS-
SOLVE
(UG/L | COPPER, DIS- SOLVED (UG/L | | 7-17-79 | 1110 | 380 | 130 | 1.3 | 1.4 | 2.7 | | 5 | 0 | 1 | 0 | 6 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY DIS- SOLVED (UG/L | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE DIS- SOLVED (MG/L AS CN) | PHENOLS | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-17-79 | 0 | 10 | .1 | 5 | 0 | 30 | .00 | 0 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS-
SOLVED S | DIS- | | ENDO-
GULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) |
MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .000 | .000 | .000 | .07 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | DIS-
SOLVED S | MIREX,
DIS- | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI -
THION
DIS-
SOLVED
(UG/L) | DIS- | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | .00 .00 .00 7-17-79 .00 .00 .00 .00 .00 .00 .00 .02 ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D.
TOTAL
IN
BOTTOM
MA-
TERIAL
(MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-----------------|---|---|--|---|--|--|---|--|--|--|---|--| | 7-17-79 | 1045 | 10400 | 7.1 | 50 | <1.0 | 38 | 400000 | 1100 | 990 | 82 | 210 | 1900 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITROGEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA
A DIS-
SOLVEI | GEN,NH
TOTAL
IN BOT | 4 | | 7-17-79 | 82 | 93 | 0 | 76 | 430 | 3300 | .05 | .02 | .09 | .07 | 704 | | | DATE | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | | | 7-17-79 | 1.3 | 1.1 | 1.4 | 1.2 | 6740 | 1.5 | .07 | .04 | 2 | 2 | 1 | | | DATE | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | | 7- 17-79 | 7 | <10 | <10 | 0 | <2 | 0 | <2 | •75 | <20 | 0 | <20 | 15 | | DATE | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | | 7-17-79 | 0 | 4 | 0 | 4 | 16 | 80 | 3 | 3 | ND | 20 | 210 | 160 | | DA | NES
DI
SOI
(UC | IGA- NES
SE, REC
IS- FM E
JVED TOM
S/L TER | XOV. TOT
SOT- REC
MA- ERA
RIAL (UC | AL MERC | URY FM E
S- TOM
VED TEF
E/L (UC | OV. NICK
OT- TO
MA- REC
RIAL ERA
G/G (UC | TAL PEN
COV- REC
ABLE ERA
G/L (UC | JS-
JDED NICK
JOV- DIS
ABLE SOI
G/L (UC | | OV.
OT- SELI
MA- NIUI
IAL TOTA
/G (UG, | AL TOI
/L (UG | M,
S-
DED
PAL | | 7-17 | 7-79 | 50 2 | 290 < | :.1 < | :.1 . | .02 | 3 | 0 | 3 | 15 < | 1 | 0 | | DA | SOI
(UC | M, TOT
S- IN E
VED TOM
S/L TER | M, ZIN
PAL TOT
BOT- REC
MA- ERA
RIAL (UC | | S-
DED ZIN
OV- DI
BLE SOI
JL (UG | IC, FM F
S- TOM
VED TEF
S/L (UC | COV.
BOT- CARE
MA- ORGA
RIAL TOT | NIC CYAN
FAL TOI
G/L (MC | | AL
OT-
MA-
AL PHENO
/G | MET | SE,
AL
OV.
VI-
RIC | | 7- 17 | 7-79 | <1 | 0 | 30 | 0 | 30 | 85] | 13 | •00 | 0 | 2 | 0 | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA--CONTINUED | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|---|---|--|---|--|--|---|---|--|---|--|--| | 7-17-79
7-17-79 |
110 | .0 | .00 | 0 |
•0 | .00 | <u>.0</u> | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17-79
7-17-79 | 4.0 | .000 | .000 | 1.6 | .000 | .000 | 2.4 | .000 | .000 | .0
 | .07 | | | DATE | DI- | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA- | ENDO-
SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS- 1
SOLVED
(UG/L) | ENDRIN, TOTAL | IOM MA- | ETHION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | .00 | .0 | .000 | •000 | .0 | .000 | .000 | .0 | .00 | .00 | .0 | .00 | | | | ETHION, | | | HEPTA-
CHLOR, | НЕРТА- | | HEPTA-
CHLOR | | | LINDANE | | | DATE | ETHION,
TOTAL
(UG/L) | TOTAL
IN BOT-
TOM MA-
TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR
EPOXIDE
DIS- | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | MATL. | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS- | | DATE
7-17-79
7-17-79 | TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR,
DIS-
SOLVED | CHLOR,
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L) | CHLOR
EPOXIDE
TOTAL
(UG/L) | TOT. IN BOTTOM MATL. (UG/KG) 0.0 | DIS-
SOLVED | LINDANE
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA- THION DIS- SOLVED (UG/L) | | 7-17-79 | TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA-
THION, TOTAL IN BOT- TOM MA- TERIAL | CHLOR,
DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- | CHLOR
EPOXIDE
TOTAL
(UG/L) | TOT. IN BOTTOM MATL. (UG/KG) 00 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. | DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | TOTAL (UG/L) .00 MALA- THION, | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED | CHLOR, TOTAL (UG/L) .000 .000 .000 .000 METH- OXY- CHLOR, TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) .00 METHYI PARA- THION, TOTAL (UG/L) | TOT. IN BOTTOM MATL. (UG/KG) 0 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) 0 .0 | DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED | LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. | MALA- THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED | | 7-17-79
7-17-79
DATE
7-17-79 | MALA-THION, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | CHLOR, TOTAL (UG/L) .00 METH- OXY- CHLOR, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L)00 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) .00 METHYI PARA- THION, TOTAL (UG/L) | TOT. IN BOTTOM MATL. (UG/KG) 00 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) 0 .0 PER- THANE | DIS- SOLVED (UG/L) .000 METHYL TRI- THION, DIS- SOLVED (UG/L) .00 TOX- APHENE, | LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL (UG/L) .00 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) .0 | MALA- THION DIS- SOLVED (UG/L) 00 MIREX, DIS- SOLVED (UG/L) | # TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA--CONTINUED NATIVE SAMPLE | DATE
7-17-79
7-17-79 | TOTAL TRI- THION (UG/L) | | - 2,4-D
- DIS-
L SOLVE | 2,4-D
D TOTAL | SOLVED
) (UG/L) | 2, 4
TOTA | -DP D:
L SOI
L) (UX | ,5-T
IS-
LVED
G/L)
 | 2,4,5-
TOTAI
(UG/I
.00 | SOLV | S- SIL
ED TO
/L) (U | VEX,
TAL
G/L)
00
 | CHLOR- PHYTO PLANI TON CHROI FLUOI (UG, | O- PHYTO- K- PLANK- TON O CHROMO ROM FLUOROM /L) (UG/L) 4 .000 | |----------------------------|---|--|--|---|---|--|--|---------------------------------|--|---|--|-------------------------------|---|--| | | | | | | | ELUTI | RIATE SAM | PLE | | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | AMMON | ,
IA
-
ED
L | ARSENIO
DIS-
SOLVED
(UG/L
AS AS) | BERY
LIUM
DIS-
SOLVE
(UG/L
AS BE | , CADM
DI
D SOLV
(UG/ | S-
ED
L | CHRO
MIUM
DIS-
SOLVE
(UG/L
AS CR | OPPER, DIS- D SOLVED (UG/L | | 7-17-79 | 1045 | 460 | 150 | 9.4 | 1.6 | 11 | 1 | 2 | 4 | 10 | C |) | 0 | 2 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | Pl | HENOLS
G/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVEI
(UG/L) | | DRIN
DIS-, | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-17-79 | 1 | 80 | .2 | 4 | 0 | 40 | .01 | | 2 | .0 | •0 | | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT, A
DIS-
SOLVED
(UG/L) | DIS- | DI-
ELDRIN S
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | D)
SO: | ION, O
IS-
LVED | HEPTA-
CHIOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | SC | DANF
DIS-
DLVED
DG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .000 | .000 | .000 | .10 | .000 | .000 | .000 | | .00 | .000 | .000 | | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TH
D
SO | IS-
LVED | 2,4-D,
DIS-
SOLVED
(UG/L) | 2, 4-DP
DIS-
SOLVED
(UG/L) | SC | 1,5-T
DIS-
DLVED
JG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .00 | .00 | .00 | .00 | .00 | .00 | .0 | | .00 | .07 | .00 | | .00 | .00 | TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |---------------------------|--|--|--|--|---|--|---|---|---|---|---| | 7-17-79 | 0950 | 10000 | 7.3 | 50 | <1.0 | 38 | 65000 | 1000 | 940 | 78 | 200 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | 7-17-79 | 1700 | 74 | 93 | 0 | 76 | 390 | 3200 | 20 | 2 | 18 | .03 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | IN BOT. | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC | ORGANIC | | M- GEN, NA + + ORO
NIC TOT I
BOT N
L (MG/ | NH4
G.
IN
MAT
/KG | | | 7-17-79 | .02 | .09 | .09 | 37 | 1.2 | 1.2 | 1.3 | 1. | 3 147 | 70 | | | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | | 7-17-79 | 1.4 | .06 | .05 | 2 | 1 | 1 | 7 | 10 | 10 | 0 | <2 | | DATE | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | 7-17-79 | 0 | <2 | .24 | <20 | 10 | ND | 8 | 0 | 5 | 2 | 3 | | DATE |
COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | RECOV.
FM BOT- | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | | 7 -1 7- 7 9 | 58 | 30 | 4 | 4 | ND | 5 | 130 | 80 | 50 | 450 | 0.1 | | | SC
(U | RECURY FM DIS- TOM DIVED TE G/L (U G HG) AS | BOT- TO
MA- RE
RIAL ER
G/G (U | KEL, S
TAL PE
XXXV- RE
XABLE ER
IG/L (U | COV- DI
ABLE SC
IG/L (U | RETKEL, FM S- TOM OLVED TE | ima- ni
Erial To
KG/G (U | IE- S
UM, PE
TAL TO
G/L (U | SUS- N
ENDED :
OTAL S
OG/L (1 | ELE- N
IUM, T
DIS- IN
OLVED TO
UG/L T | ELE-
IUM,
OTAL
BOT-
M MA-
ERIAL
UG/G) | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA--CONTINUED | ים | ;
]
] | ZINC,
IOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC
SUS-
PENDI
RECO
ERAB
(UG/
AS ZI | -
ED ZIN
V- DI
LE SOL
L (UG | C, FM F
S- TOM
VED TEI
L/L (UC | COV.
BOT- CARI
MA- ORG
RIAL TO
G/G (M | ANIC CYA
TAL TO
G/L (M | TO
IN
NIDE TOM
TAL TER
G/L (U | JG/G | GRE
TO'
REI
NOLS GR
ME | ASE, GRE TAL TOT COV. BOT AVI- GR TRIC ME | AND ASE, IN ANT AVI- TRIC KG) | | |-----------------------------|--|---|--|---|--|--|---|--|--|------------------------------------|--|---|------------------------------------| | 7-1 | 7-79 | 20 | | 0 | 20 | 43 | 13 | .00 | 0 | 1 | 0.0 | 0 | | | DATE | OXYGEI
DEMANI
CHEM-
ICAL
(HIGH
LEVEL
(MG/L |),
-
P(
D)
SOI | CB,
IS-
LVED
G/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL,
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 7-17-79
7-17 - 79 | |
10 | •0 | .00 | 0 | .0 | .00 | .0 | .000 | .000 | .0 |
.0 | .0 | | DATE | CHLOR
DANE,
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | - DDI
- DIS
L SOL | D,
S-
ÆD | | DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17-79
7 - 17-79 | 2. | |
.000 | .000 | .4 | .000 | .000 | .0 | .000 | .000 | .0 | .38 | | | | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINO TOTA IN BO TOM M TERL (UG/K) | N,
L
I- E
A-
AL S | | DI-
ELDRIN
TOTAL | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA- | ENDO-
SULFAN, | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL | ENDRIN, | ENDRIN,
TOTAL
(UG/L) | ENDRIN,
TOTAL
IN BOT-
TOM MA- | ETHION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | .00 | | .0 |
•000 | .000 | .0 | .000 | .000 | .0 | .00 | .00 | •0
 | .00 | | DATE | ETHIO
TOTA
(UG/ | N, TOM
L TE | AL
30T- | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
DIS- | EPOXIDE
TOTAL | MATL. | E LINDANE
1 DIS-
SOLVED | LINDANI
TOTAL | TERIAL | MALA-
THION
DIS-
SOLVED | | 7-17-79
7 - 17-79 | _ | 00 | .0 | •000 | .00 | 0 .0 | | ••• | | | • • • • | | .00 | | DATE | MALA
THIO
TOTA
(UG/ | MA THI TO IN I N, TOM L TE | LA-
ION,
IAL
BOT-
MA- | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHIOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYI
PARA-
I THION,
I DIS- | METHYI PARA- THION, TOTAL | METHYL PARA- THION, TOT. IN BOTTON MATL. | METHYL TRI- THION, DIS- SOLVED | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) | MIREX,
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | | 00 | .0 | | .00 | .0 | | .00 | |) <u></u> | .00 | .0 | | TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA--CONTINUED ### NATIVE SAMPLE | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX -
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOM MA- | TRI-
THION,
DIS-
SOLVED
(UG/L) | |--------------------|---------------------------|--|---|-----------------|---|--|----------------------------------|---|--|------------------------------------|-------------------|--| | 7-17-79
7-17-79 | .00 | .0 |
•00 | .00 | .0 | .00 | .00 | .00 | •0 | .0 | .0 | .00 | | 1-11-19 | | | •00 | | | •00 | | | •0 | | | •00 | | | | TRI-
THION, | | | | | | | | | CHLOR-A
PHYTO- | CHLOR-B
PHYTO- | | | | TOTAL | | | | | | | | | PLANK- | PLANK- | | | TOTAL | IN BOT- | 2,4-D, | | 2,4-DP | | 2,4,5 | | SILVE | | TON | TON | | | TRI-
THION | TOM MA-
TERIAL | DIS-
SOLVED | 2,4-D,
TOTAL | DIS-
SOLVED | 2, 4-D | P DIS | | | | • | CHROMO
FLUOROM | | DATE | (UG/L) | (UG/KG) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | (UG/ | | | | | (UG/L) | | 7-17-79
7-17-79 | •0 | 0 .0 | .00 | .14 | .00 | .00 | .00 | • • • | | .00 | 8.56 | .000 | ### ELUTRIATE SAMPLE | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC | ARSEN | DIS-
D SOLVED
(UG/L | CADMIU
DIS- | DIS- | DIS-
D SOLVI | -
SID
C | |---------|---|--|--|---|---|--|---|---|--|--|-------------------------------------|---| | 7-17-79 | 0950 | 380 | 120 | .84 | 2.5 | 3.3 | 3 | 10 | .2 .2, | 0 | • | -, | | | LEAD, | MANGA-
NESE, | | | SELE- | ZINC, | CYANIDE | 10 | Ů | · · | • | CHLOR- | | | DIS-
SOLVED PHENOLS | PCB,
DIS- | PCN,
DIS- | ALDRIN
DIS-, | DANE,
DIS-, | | DATE | (UG/L
AS PB) | (UG/L
AS MN) | (UG/L
AS HG) | (UG/L
AS NI) | (UG/L
AS SE) | (UG/L
AS ZN) | (MG/L
AS CN) | (UG/L) | SOLVED
(UG/L) | SOLVED
(UG/L) | SOLVED
(UG/L) | SOLVED
(UG/L) | | 7-17-79 | 0 | 560 | .1 | 1 | 0 | 30 | .01 | 4 | .0 | .0 | .000 | •0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DIS- | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .000 | .000 | .000 | .06 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | DIS- | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .00 | .00 | •00 | .00 | .00 | .00 | .0 | .00 | .02 | .00 | .00 | .00 | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA $293059089441900 \quad
\text{MARTINS CANAL NEAR HAPPY JACK, IA}$ | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |---------------------|--|---|--|---|---|--|--|--|--|--|--|--| | 7-17-79 | 1020 | 9 570 | 7.2 | 50 | <1.0 | 38 | 260000 | 980 | 890 | 79 | 190 | 1700 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | | 7-17-79 | 83 | 105 | 0 | 86 | 380 | 3200 | 19 | 4 | 15 | .00 | .02 | | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | + ORG. | | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ı. | | 7-17-79 | .00 | .01 | 380 | 1.3 | 1.2 | 1.3 | 1.2 | 6250 | 1.3 | .08 | .13 | | | DATE | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | | 7-17-79 | 2 | 1 | 1 | 8 | 10 | 10 | 0 | · ND | 0 | ND | .88 | <20 | | DATE | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL,
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | 7-17-79 | 0 | <20 | 12 | 0 | 30 | 26 | 4 | 31 | 10 | 6 | 6 | ND | | DATE | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | | 7-17-79 | 65 | 170 | 170 | <10 | .1 | .0 | .03 | 3 | 2 | <2 | 15 | <1 | | DA
7 - 17 | | M, SEI
S- NIU
DED DI
PAL SOI
/L (UC
SE) AS | M, TOI
IS- IN E
EVED TOM
S/L TER | M, ZIM PAL TOTO FOT - REC MA - ERA UAL (UC | TAL PEN
COV- REC
ABLE ERA
G/L (UC | US-
NDED ZIM
XOV- DI
ABLE SOI
G/L (UC | IS- ORGA
LVED TOT
G/L (MG
ZN) AS | NIC CYAN
PAL TOT
G/L (MG
C) AS | AL TERI | TAL
SOT -
MA -
TAL PHEN
S/G | OLS GRA | SE, | TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293059089441900 MARTINS CANAL NEAR HAPPY JACK, LA--CONTINUED | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN, TOTAL (UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANF,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |--------------------|---|---|---|--|--|---|--|--|-------------------------------------|---|---|------------------------------------| | 7-17-79
7-17-79 |
97 | .0 | .00 | 64
 | .0 | .00 | .0 | .000 | .000 | .0 | .0 | .0
 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN POT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17-79
7-17-79 | 79
 | .000 | .000 | 56
 | .000 | .000 | 3.3 | .000 | .000 | .0 | .14 | | | DATE | DI- | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | -AM MOT | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL
(UG/L) | TOM MA- | ETHION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | .00 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .00 | .00 | .0 | .00 | | DATE | ETHION,
TOTAL
(UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | | DIS-
SOLVED | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | MATL. | E
I LINDANE
I DIS-
SOLVED | LINDANE
TOTAL
(UG/L) | TERIAI | MALA-
THION
DIS-
SOLVED | | 7-17-79
7-17-79 | .00 | | .000 | 0 | | | 0 | | | | | | | DATE | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHIOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTON
MATL.
(UG/KG) | N THION, O DIS- SOLVED | METHYI
PARA-
THION, | TOT. IN
BOTTON
MATL | THION, DIS- SOLVED | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | .00 | .0 | .00 | .00 | | | .00 | | | .00 | .0 | .00 | | DATE | MIREX,
TOTAL | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL | PARA-
THION,
DIS-
SOLVED | PARA-
THION,
TOTAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | PER-
THANE,
DIS-
SOLVED | PER-
THANE
TOTAL | PER-
THANE
IN
BOTTOM
MATERIL | TOX-
APHENE,
DIS-
SOLVED | TOX-
APHENE,
TOTAL | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL | TRI-
THION,
DIS-
SOLVED | | | (UG/L) | (UG/KG) | (UG/L) | TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293059089441900 MARTINS CANAL NEAR HAPPY JACK, LA--CONTINUED ### NATIVE SAMPLE | DATE
7-17-79
7-17-79 | TOTAL TRI- THION (UG/L) | 0. | - 2,4-D
- DIS-
L SOLVE | 2,4-E
D TOTAL
) (UG/I |
SOLVEI
(UG/L) | 2, 4
TOTA | L SOI
L) (UC | ,5-T
IS- 2,4,;
VED TOTE
5/L) (UG, | AL SOLV.
/L) (UG
0 - | S- SILA
ED TOT
/L) (UC | FLU
G/L) (U | TO- PHYTO-
NK- PLANK-
N TON | |----------------------------|---|--|--|---|---|--|--|--|---|--|-------------------------------------|--| | | | | | | | ELUTRIATI | SAMPLE | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | S, ARSENIC
- DIS-
ED SOLVED
L (UG/L | BERYL
C LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIT
DIS- | DIS-
SOLVE
(UG/L | , COPPER, DIS- D SOLVED (UG/L | | 7-17-79 | 1020 | 450 | 150 | 5.8 | 5.2 | 11 | | 1 | 10 | 0 | 0 | 4 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-17-79 | 0 | 30 | .1 | 3 | 0 | 30 | .01 | 3 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | | DIS-
SOLVED | DI-
ZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN S
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-78 | .000 | .000 | .000 | .04 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | | METH-
CXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED | DIS- | MIREX,
DIS- | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION,
DIS-
SOLVED
(UG/L) | | 2,4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | **7-17-79** .00 .00 .00 .00 .00 .00 .0 .00 .10 .00 .00 .01 ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | |---------|--|--|--|---|---|---|---|---|--|---|---|---| | 7-17-79 | 1145 | 13500 | 7.4 | 30 | <1.0 | 95 | 350000 | 1400 | 1300 | 110 | 280 | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | | 7-17-79 | 2500 | 99 | 111 | 0 | 91 | 600 | 4300 | 59 | 39 | 20 | .00 | | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA | GEN,NH
A TOTAL
IN BOT | 4 NITRO
GEN,
ORGANIO
TOTAL | ORGANIC
C DIS-
SOLVEI | GEN,AM
MONIA
ORGANI | - GEN,
+ MONI
C ORGA
DIS | AM- GEN,
A + + OF
NIC TOT
B BOT
G/L (MC | KG.
IN
MAT
G/KG | | | | 7-17-79 | .02 | .16 | .06 | 280 | 2.0 | .21 | 2.2 | .2 | .7 49 | 000 | | | | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
SUS-
PENDED
RECOV.
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLF
(UG/L
AS CD) | | 7-17-79 | 2.2 | .10 | .03 | 3 | 2 | 1 | 6 | 20 | 0 | 20 | 0 | ND | | DATE | CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | | 7-17-79 | 0 | ND | .66 | 20 | 10 | 0 | 12 | 0 | 12 00, | 15 | 2 | | | DATE | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L | | | 7-17-79 | 16 | 20 | 72 | 71 | 2 | 20 | 270 | 260 | 10 | 250 | .1 | | | D | MER
D
SO
(U
ATE AS | MER
RED
CURY FM:
IS- TOM
IVED TE
G/L (U
HG) AS | CURY COV. NIC BOT- TO MA- RE RIAL ER G/G (U HG) AS | NIC
KEL, S
TAL PE
COV- RE
ABLE ER
G/L (U
NI) AS | KEL, US- NDED NIC COV- DI ABLE SO G/L (U | NICI REX KEL, FM I S- TOM LVED TEI G/L (UK | KEL,
COV.
BOT- SE
MA- NI
RIAL TO
G/G (U
NI) AS | SE S | CLE- CUM, SE CUS- NI CINDED I OTAL SC CIG/L (U C SE) AS | SELE- NI
IUM, TO
DIS- IN
DIVED TOM | ELE- IUM, DTAL BOT- 1 MA- RRIAL G/G) | | TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA--CONTINUED NATIVE SAMPLE | 1 | TO
RI
EI
(1 | OTAL PE
ECOV- RE
RABLE ER
UG/L (U | US-
NDED ZIN
COV- DI
ABLE SOI
G/L (UC | ZIN
RECO
IC, FM B
IS- TOM I
IVED TER
G/L (UG
ZN) AS | OV.
OT- CARE
MA- ORGA
LIAL TOTA
L/G (MC | ANIC CYAN
TAL TOT
G/L (MC | TO:
IN I
JIDE TOM
PAL TER:
G/L (U | G/G | REC
POLS GRA | ASE, GREATAL TOT
COV. BOT
AVI- GR
TRIC ME | | | |---------------------------------------|---|--|---|---|---|---|--|---|--|---|--
---| | 7- | 17-79 | 40 | 10 | 30 | 47 | 13 | .00 | 0 | 0 | 0 | 0 | | | DATE | OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 7-17-79
7-17-79 |
210 | .0 | .00 | 0 |
•0 | .00 | .0 | | .000 | .0
 | | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT, DIS- SOLVED | DDT,
TOTAL
(UG/L) | DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17 - 79
7-17 - 79 | 1.0 | .000 | .000 | .6 |
•000 | .000 | .0 | .000 | .000 | .0
 |
.06 | | | | | | | | | | | | | | | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- I
ELDRIN T
TOTAL | OM MA-
TERIAL S | ENDO-
SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO-
SULFAN, ' | ENDO-
SULFAN,
TOTAL
IN BOT- I
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS- I
SOLVED
(UG/L) | ENDRIN, | TOM MA-
TERIAL S | ETHION
DIS-
SOLVED
(UG/L) | | 7-17-79 | AZINON,
TOTAL | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL | ELDRIN
DIS-
SOLVED
(UG/L) | DI- I
ELDRIN T
TOTAL | ILDRIN,
TOTAL
IN BOT- S
OM MA-
TERIAL S | SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO-
SULFAN, ' | SULFAN,
TOTAL
IN BOT- I
TOM MA-
TERIAL | DIS- I
SOLVED
(UG/L) | ENDRIN, | TOTAL,
IN BOT- I
TOM MA-
TERIAL S | DIS-
SOLVED
(UG/L) | | | AZINON,
TOTAL
(UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) -0 ETHION, TOTAL , TOM MA- TERIAL | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- | DI- I
ELDRIN T
TOTAL
(UG/L) (| ELDRIN, TOTAL IN BOT- S OM MA- TERIAL S UG/KG) | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- | ENDO-
SULFAN,
TOTAL
(UG/L) | SULFAN, TOTAL IN BOT- II TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT, IN | DIS- I
SOLVED
(UG/L) | ENDRIN, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- | DIS-
SOLVED
(UG/L)

.00
MALA-
THION
DIS- | | 7-17-79
7-17-79
DATE
7-17-79 | AZINON, TOTAL (UG/L) .00 ETHION TOTAL | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- , TOM MA- TERIAL) (UG/KG) | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L) | DI- I ELDRIN TOTAL (UG/L) (.000 HEPTA-CHLOR, TOTAL | LIDRIN, TOTAL N BOT- OM MA- TERIAL UG/KG) .0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL | SULFAN, DIS- SECUVED (UG/L) | ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHIOR EPOXIDE TOTAL | SULFAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) | DIS- I SOLVED (UG/L)00 | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS-
SOLVED
(UG/L)

.00
MALA-
THION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79
DATE | AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- | DI- I ELDRIN T TOTAL (UG/L) (.000 HEPTA- CHLOR, TOTAL (UG/L) .000 | ELDRIN, TOTAL IN BOT- OM MA- TERIAL SUG/KG) HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L) | ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHIOR EPOXIDE TOTAL (UG/L) .000 | SULFAN, TOTAL IN BOT- IN BOT- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 METHYL PARA- | DIS- I SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L) | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | DIS-
SOLVED
(UG/L)

.00
MALA-
THION
DIS-
SOLVED
(UG/L) | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA--CONTINUED | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA-PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG | | |-----------------------------|---|---|---|---|---|---|---|---|---|--|---|---| | 7-17-79
7-17 - 79 | .00 | .0
 | .00 | .00 | .0
 | .00 | .00 | | .0 | .0 | .0 | .00 | | DATE | TOTAL
TRI-
THION
(UG/L) | TRI-
THION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | - 2,4-D,
- DIS-
L SOLVEI | 2,4-D
TOTAL | SOLVEI | 2, 4
TOTA | L SOI | ,5-T
IS- 2,4,;
WED TOTA
G/L) (UG, | AL SOLV | S-SILVED TO | TAL FLUC | TO- PHYTO-
IK- PLANK-
I TON
IMO CHROMO | | 7-17-79
7-17-79 | .00 | | | | | | 00 | .00 | .00 | .00 | .00 3 | 9.3 .000 | ELUTI | RIATE SAM | PLE | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS- | S, ARSENIO
- DIS-
ED SOLVED
L (UG/L | BERYI
C LIUM,
DIS-
SOLVEI
(UG/L
AS BE) | CADMIU
DIS-
SOLVEI
(UG/L | DIS-
SOLVEI
(UG/L | DIS-
SOLVED
(UG/L | | 7-17-79 | 1145 | 520 | 180 | | | | | - 2 | C |) (|) (|) 3 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY DIS- SOLVED (UG/L AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) | (MG/L | PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-17-79 | 0 | 80 | 0.1 | 2 | 0 | 30 | .01 | 9 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS-
SOLVED S | DIS- | DI-
ELDRIN :
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANF
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .000 | .000 | .000 | .03 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | DIS-
SOLVED | MIREX,
DIS- | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .00 | •00 | .00 | .00 | .00 | .00 | .0 | •00 | •00 | .00 | .00 | .00 | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------------|--|---|---|--|---|--
--|--|--|--|---|--| | 7-17-79 | 1210 | 13200 | 7.5 | 30 | <1.0 | 110 | 86000 | 1400 | 1300 | 110 | 270 | 2400 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO
GEN,
AMMONI,
TOTAL
(MG/L
AS N) | AMMONI
A DIS-
SOLVE | ZA
ZD | | 7-17-79 | 100 | 105 | 0 | 86 | 570 | 4100 | 13 | .03 | .02 | .11 | .04 | | | DATE | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | | | 7-17 - 79 | 390 | 1.1 | .83 | 1.2 | .87 | 5700 | 1.3 | .06 | .040 | 1 | 1 | | | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | 7-17-79 | 1 | 8 | 10 | 10 | 0 | ND | 0 | ND | .89 | 20 | 10 | ND | | DATE | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | 7-17-79 | 13 | 0 | 8 | 8 | ND | 20 | 20 | 8 | 8 | ND | 25 | 120 | | DATE | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SEIE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | | 7-17-79 | 120 | 10 | 360 | •2 | .2 | .03 | 3 | 2 | 2 | 20 | 1 | o | | DATE
7-17-79 | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS (UG/L) 0 | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OII, AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | , _, ,, | - | 9 | 50 | 10 | 20 | 04 | | •00 | J | J | J | J | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA--CONTINUED | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|---|---|---|---|--|---|--|--|--|---|---|---| | 7-17-79
7-17-79 | 210 | .0 | .00 | 0 | .0 | .00 | .0 | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-17-79
7-17-79 | 6.0
 | .000 | .000 | 2.6 | .000 | .000 | 1.8 | .000 | .000
 | .0 | .05 | | | DATE | DI- | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI-
ELDRIN ' | TOM MA- | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO- | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ETHION
DIS-
SOLVED
(UG/L) | | 7-17-79
7-17-79 | •00 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .00 | .00 | .0 | .00 | | | | | | | HEPTA- | | | HEPTA- | | | | | | DATE | ETHION,
TOTAL
(UG/L) | TERI AL | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | CHLOR,
TOTAL | DIS- | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOR EPOXIDE TOT. IN BOTTOM MATL. | LINDANE | LINDANE
TOTAL
(UG/L) | TERIAI | MALA-
THION
DIS-
SOLVED | | DATE
7-17-79
7-17-79 | TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR,
DIS-
SOLVED | CHLOR,
TOTAL | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR EPOXIDE DIS- SOLVED (UG/L) | CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) | LINDANE
DIS-
SOLVED | LINDANE
TOTAL | TOTAL
IN BOT-
TOM MA-
TERIAI | MALA-
THION
DIS-
SOLVED | | 7-17-79 | TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL | CHLOR,
DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL
(UG/L) | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- | CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) .0 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. | LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION, | LINDANE
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAI (UG/KG) | MALA- THION DIS- SOLVED (UG/L) | | 7-17-79
7-17-79 | TOTAL (UG/L) .00 MALA- THION, | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | CHLOR,
DIS-
SOLVED
(UG/L)

.000
METH-
OXY-
CHLOR,
DIS-
SOLVED | CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) .000 METHYI PARA- THION, TOTAL (UG/L) | CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 METHYI. PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) | LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED (UG/L) |
LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL | TOTAL IN BOTT TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT. IN BOJITOM MATL. | MALA- THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED | | 7-17-79
7-17-79
DATE
7-17-79 | MALA-THION, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | CHLOR, DIS-SOLVED (UG/L) METH-OXY-CHLOR, DIS-SOLVED (UG/L) 000 | CHIOR, TOTAL (UG/L) .000 METH-OXY-CHIOR, TOTAL (UG/L) .00 PARA-THION, TOTAL | CHLOR, TOTAL IN BOTT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L) .000 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) .000 METHYI PARA- THIONAL (UG/L) .00 | CHLOR EPOXIDE TOT. IN MATL. (UG/KG) .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) .0 .0 | LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE, | LINDANE TOTAL (UG/L) .000 METHYL TRIC THION, TOTAL (UG/L) .00 | TOTAL IN BOT- IN BOT- TOM MA- TERIAI (UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) | MALA- THION DIS- SOLVED (UG/L) MIREX, DIS- SOLVED (UG/L) | ## TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA--CONTINUED #### NATIVE SAMPLE | DATE
7-17-79
7-17-79 | TOTAL TRI- THION (UG/L) | | 7. 2,4-D
C- 2,4-D
A- DIS-
AL SOLVE
G) (UG/L | 2,4-D
D TOTAL
) (UG/L | SOLVED
) (UG/L)
2 | 2, 4-
TOTAI
(UG/I | SOLV
(UG/ | S- 2,4,5
/ED TOTA
/L) (UG/
0 | L SOLVI
L) (UG, | S- SILVE ED TOTA /L) (UG/ | L FLUOI
L) (UG, | O- PHYTO- C- PLANK- TON CHROMO ROM FLUOROM (UG/L) .9 .000 | |----------------------------|---|---|---|---|---|--|--|---------------------------------------|--|--|---|---| | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
DIS-
SOLVEI
(MG/L
AS P) | DIS- | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOIMED
(UG/L
AS CU) | | 7-17-79 | 1210 | 510 | 160 | | | | | 5 | 0 | 1 | 0 | 3 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVEI
(UG/L
AS MN) | MERCUR
DIS-
D SOLVED
(UG/L | DIS- | DIS- | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) | (MG/L | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-17-79 | 1 | 130 | 0.1 | 3 | 0 | 30 | .00 | 13 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT,
DIS-
SOLVED
(UG/L) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-17-79 | .000 | .000 | .000 | .05 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL
TRI-
THION,
DIS-
SOLVED
(UG/L) | MIREX,
DIS- | DIS- | PER-
THANE A
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | DIS- | DIS-
SOLVED : | 2, 4-DP 2
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | .00 .0 .00 .00 .00 .00 .00 7-17-79 .000 .00 .00 .00 .00 # TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLF, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------------------|--|--|---|--|---|--|---|---|---|---|---| | 10-18-79 | 1200 | 38800 | 8.3 | 5 | <1.0 | 880 | 67000 | 5200 | 5100 | 280 | 1100 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | AS | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | 10-18-79 | 8300 | 410 | 142 | 0 | 116 | 2100 | 15000 | 48 | 28 | 20 | .01 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA | GEN, NH4
TOTAL
IN BOTA | NITRO-
GEN, | ORGANI
C DIS-
SOLVE | GEN, AM
C MONIA
ORGANI
D TOTAL
(MG/L | H GEN,
H MONI
C ORGA
DIS | A + + OR
NIC TOT
B BOT
MG/L (MG | NH4
:G.
IN
MAT
:/KG | | | 10-18-79 | .02 | .11 | .01 | 75 | .42 | .38 | .53 | | 39 79 | 40 | | | | NITRO-
GEN,
TOTAL
(MG/L | PHOS-
PHORUS,
TOTAL
(MG/L | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L | ARSENIC
TOTAL
(UG/L | ARSENIC
SUS-
PENDED
TOTAL
(UG/L | ARSENIC
DIS-
SOLVED
(UG/L | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | BERYL-
LIUM,
DIS-
SOLVED
(UG/L | RECOV.
FM BOT-
TOM MA-
TERIAL | CADMIUM TOTAL RECOV- ERABLE (UG/L | | DATE | AS N) | AS P) | AS P) | AS AS) | AS AS) | AS AS) | AS AS) | AS BE) | AS BE) | | AS CD) | | 10-18-79
DATE | .56 CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD) | CADMIUM DIS- SOLVED (UG/L AS CD) | CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) | CHRO-MIUM,
SUS-PENDED
RECOV.
(UG/L
AS CR) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) | CHRO-MIUM, HEXA-VALENT, DIS. (UG/L AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU) | COPPER, DIS- SOLVED (UG/L AS CU) | | 10-18-79 | 0 | 1 | .11 | 30 | 20 | 10 | 8 | 0 | ND | 0 | ND | | DATE | COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANCA-
NESE,
RFCOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | | 10-18-79 | 13 | 130 | 15 | 15 | ND | 20 | 50 | 30 | 20 | 490 | .0 | | | E
SC
(U
DATE AS | REX CCURY FM I DIS- TOM DIVED TE I G/L (U G HG) AS | COV. NICE BOT- TO: MA- REX RIAL ER G/G (UX HG) AS | KEL, SI
FAL PE
COV- RE
ABLE ER
G/L (U
NI) AS | COV- DI
ABLE SO
G/L (U
NI) AS | REL, FM KEL, FM S- TOM LVED TE G/L (U NI) AS | MA- NI
RIAL TO
G/G (U
S NI) AS | NI
ELE- S
IUM, PE
OTAL TO
UG/L (U
S SE) AS | SUS- NI
ENDED I
OTAL SO
UG/L (U
S SE) AS | CLE- NICOM, TO
DIS- IN
DLVED TOM
DG/L TI
G SE) (U | CLE-
CUM,
DTAL
BOT-
1 MA-
CRIAL
UG/G) | TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLE, LA--CONTINUED NATIVE SAMPLE | Ι | 7
F
F | ZINC, S TOTAL PE RECOV- RE ERABLE ER (UG/L (U | ABLE SOI | REANC, FM I
IS- TOM
LVED TE
G/L (U | MA- ORG
RIAL TO
G/G (M | TAL TO | TO
IN
NIDE TOM
TAL TER
G/L (U | INIDE PTAL BOT- I MA- UAL PHEN IG/G CN) (U | GRE
TO
RE
VOLS
GR
ME | ASE, GRE TAL TOI COV. BOI AVI- GR TRIC ME | AND
CASE,
IN
MAT
CAVI-
TRIC
S/KG) | | |--|---|---|---|--|---|---|--|--|--|---|---|--| | 10-1 | 18-79 | 30 | 10 | 20 | 43 | 8.6 | .00 | 130 | 1 | 1 | 0 | | | DATE | OXYGEN
DEMANI
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L) | PCB,
DIS-
SOLVED | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 10-18-79 | | | .00 | 7 | | .00 | .0 | | .000 | .0 | | .0 | | 10-18-79 | 800 | .0 | | | .0 | | | .000 | | | .0 | | | DATE | CHIOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | DDD, DIS- SOLVED | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 10-18-79 | .0 | | .000 | .8 | | .000 | .1 | | .000 | .0 | | | | 10-18-79 | | .000 | | | .000 | | | .000 | | | .01 | | | | | | | | | | | | | | | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED | DI-
ELDRIN ' | TOM MA-
TERIAL | SOLVED | ENDO-
SULFAN,
TOTAL | TOM MA-
TERIAL | SOLVED | ENDRIN,
TOTAL | TOM MA-
TERIAL | ETHION DIS- SOLVED | | DATE
10-18-79 | AZINON, | AZINON,
TOTAL
IN BOT-
TOM MA- | ELDRIN
DIS- | DI-
ELDRIN ' | ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | SULFAN,
DIS- | ENDO-
SULFAN, | SULFAN,
TOTAL
IN BOT- I
TOM MA- | DIS- | ENDRIN, | TOTAL
IN BOT-
TOM MA- | DIS- | | | AZINON,
TOTAL
(UG/L) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ELDRIN
DIS-
SOLVED | DI-
ELDRIN
TOTAL
(UG/L) | ELDRIN, TOTAL IN BOT- TOM MA- TERIAL | SULFAN,
DIS-
SOLVED | ENDO-
SULFAN,
TOTAL
(UG/L) | SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS-
SOLVED
(UG/L) | | 10-18-79 | AZINON,
TOTAL
(UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- N, TOM MA- | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- | DI-
ELDRIN
TOTAL
(UG/L) | ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .2 HEPTA- CHLOR, TOTAL | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED | ENDO-
SULFAN,
TOTAL
(UG/L)
.000 | SULFAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) HEPTA- CHLOR FPOXIDE TOT. IN | DIS-
SOLVED
(UG/L) | ENDRIN, TOTAL (UG/L) .00 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- | DIS-SOLVED (UG/L)00 E MAIA THION - DIS- L SOLVED | | 10-18-79
10-18-79
DATE
10-18-79 | AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/I) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL L) (UG/KG) | ELDRIN DIS- SOLVED (UG/L) 000 HEPTA- CHLOR, DIS- SOLVED (UG/L) | DI-
ELDRIN TOTAL
(UG/L)
.000 | ELDRIN, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) .2 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L) | ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL | SULPAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) | DIS-
SOLVED
(UG/L)

.00
LINDANE
DIS-
SOLVED
(UG/L) | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAI (UG/KG) | DIS- SOLVED (UG/L) 00 E MAIA THION - DIS- L SOLVED (UG/L) 0 | | 10-18-79
10-18-79
DATE | AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/I) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 . | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- | DI- ELDRIN TOTAL (UG/L) .000 HEPTA- CHLOR, TOTAL (UG/L) .000 | ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .2 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHIOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- HION, DIS- SOLVED SOLVED SOLVED | ENIDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L) | SULFAN, TOTAL IN BOT- I TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | DIS- SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L) | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS- SOLVED (UG/L) 00 E MAIA- THION DIS- SOLVED (UG/L) | TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLE, LA--CONTINUED NATIVE SAMPLE | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG | TRI-
THION,
DIS-
SOLVED
) (UG/L) | |----------------------|--|--|--|--|---|--|--|---|--|-------------------------------------|--|---| | 10-18-79
10-18-79 | .00 | .0 | | .00 | .0 | | .00 | .00 | | .0 | : | | | DATE | TOTAL TRI- THION (UG/L) | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | .01
2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED | .00
2, 4-1
TOTAL
(UG/L | 2,4,5-
DP DIS-
SOLVE | -T
- 2,4,5
≊D TOTA | L SOLVE | X,
- SILVI | CHLOR PHYT PLAN TON EX, CHRO | -A CHILOR-B O- PHYTO- K- PLANK- TON MO CHROMO | | 10-18-79 | .00 | .0 | | .00 | | .0 | | | 00 | | .00 6 | .80 .000 | | 10-18-79 | | | .02 | | .00 | - | (| 00 | , | .00 | | | | | | | | | ELUT | RIATE SA | MPLE | | | | | | | | | | OXYGEN | NITRO- | | | | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOLVEI
(UG/L
AS CU) | DIS-
SOLVE
(UG/L | _ | | | 10-18-79 | 1200 | 440 | 870 | 4.2 | 2 | 0 | 1 | 16 | |) | 0 | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS- | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | DIS- | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-, | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | DDD,
DIS-
SOLVED
(UG/L) | | 10-18-79 | 3000 | .0 | .0 | .0 | 20 | .00 | 2 | .0 | .0 | .000 | .0 | .000 | | | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DI-
ZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN S
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN, I
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR-
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | | 10-18-79 | .000 | .000 | .02 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | .00 | | DATE | METHY
PARA-
THION
DIS-
SOLVE
(UG/L | TRI-
THION,
DIS-
D SOLVEI | MIREX,
DIS-
SOLVEI | DIS-
SOLVE | DIS-
D SOLVEI | | DIS-
D
SOLVE | DIS-
D SOLVE | DIS- | DIS
D SOLV | - DIS | S-
TED | .00 .0 .00 10-18-79 .00 .00 .00 .00 .01 .00 .01 .00 TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
UMHOS) (1 | PH (| INUM-
COBALT | | DE
TLE- C
BLE I
PTER (
VL/ LE | MAND, T
HEM-
CAL BO
HIGH
WEL) TI | OTTOM 1
MA-
ERIAL | HARD- I
NESS NO
(MG/L BO
AS | ONCAR- DI
ONATE SO
(MG/L (1 | LCIUM S
IS- I
OLVED SO
MG/L (I | AGNE-
SIUM,
DIS-
DLVED
MG/L
S MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |---------|--|---|---|---|---|--|--|---|--|--|--|--|--| | 7- 8-81 | 1000 | 17700 | 8.0 | 5 | 3.0 < | 1.0 | 700 | 16000 | 1900 | 1800 | 150 | 380 | 3100 | | DATE | POTAS-
SIUM,
DIS-
SOLVEI
(MG/L
AS K) | LINITY
FIELD | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | | | 7- 8-81 | 100 | 98 | 790 | 5800 | 9 | 2 | 7 | .03 | .04 | .27 | .22 | | | | D.MT | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L | ORGANIC
DIS-
SOLVED
(MG/L | ORGANIC
TOTAL
(MG/L | NITRO-
GEN, NH-
+ ORG.
TOT IN
BOT MA'
(MG/KI) | NITRO
GEN,
I TOTAL
G (MG/I | PHORUS TOTAL (MG/) | S, DIS
L SOLV!
L (MG/ | S,
- ARSEN
ED TOTA
L (UG/ | L TOTAL
L (UG/L | D | | | | DATE | AS N) | AS P |) AS P |) ASA | S) AS AS |) | | | | 7- 8-81 | ARSENIC
DIS-
SOLVEI | TOM MA- | LIUM,
TOTAL
RECOV-
ERABLE | | RECOV.
FM BOT-
TOM MA- | CADMIUM
TOTAL
RECOV-
ERABLE | CADMIUM
CADMIUM
DIS-
SOLVE | CADMIUM
RECOVI
M FM BOTH
TOM MA-
D TERIAL | M CHRO- MIUM, TOTAL RECOV L ERABLE | CHRO-
MIUM,
SUS-
- PENDED | CHRO-
MIUM,
DIS-
SOLVED | | | | DATE | (UG/L
AS AS) | (UG/G
AS AS) | (UG/L
AS BE) | (UG/L
AS BE) | TERIAL
(UG/G) | (UG/L
AS CD) | (UG/L
AS CD) | (UG/G
(ASCD) | | | (UG/L
AS CR) | | | | 7- 8-81 | | · | · | - | | 1 | | 0.0 | | | | | | | DATE | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAI
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV- | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS- | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | | | | 7- 8-81 | c | 0 | 4 | 1 | 3 | 5 | 50 | 8 | 3 | 5 | 5 | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
SUS-
PENDED
RECOV.
(UG/L | MANGA-
NESE, | RECOV.
FM BOT- | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | TOM MA-
TERIAL
(UG/G | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | | | | 7- 8-81 | 40 | 20 | 20 | 160 | .3 | .4 | .03 | 2 | 4 | 10 | 0 | | | | | SELE-
NIUM,
SUS-
PENDEI
TOTAL
(UG/L | SOLVED
(UG/L | TERIAL | | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | CARBON,
ORGANIC
TOTAL
(MG/L | CYANIDE
TOTAL
(MG/L | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | PHENOLS | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC | | | | DATE | AS SE) | AS SE) | (UG/G) | AS ZN) | AS ZN) | AS C) | AS CN) | AS CN) | (UG/L) | (MG/L) | (MG/KG) | | | | 7- 8-81 | (|) 0 | 0 | 30 | 31 | 7.2 | .00 | 0 | 1 | . 0 | 0 | | | TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | | |----------------------------|---|---|--|--|--|---|--|--|--|--|--|--| | 7- 8-81
7- 8-81 | 830 | <.1 | <.10 | <1
 | <.1 | <.10
 | <1.0
 | <.00 | <.00 | <.1
 | <.1 | | | DATE | CHLOR-
DANE,
TOTAL
(UG/L) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.1
 | <1.0 |
<.001 | <.001
 | <.1
 | <.001 | <.001 | <.1
 | <.001 | <.001
 | <.1
 | .04 | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI -
ELDRIN
TOTAL
(UG/L) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL
(UG/L) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ETHION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.01
 | <.1 |
<.001 | <.001 | .1
 | <.001 | <.001 | <.1 | <.001 | <.001 | <.1
 | <.01 | | DATE | ETHION,
TOTAL
(UG/L) | ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
TOTAL | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | I.INDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS- | | 7- 8-81
7- 8-81 | <.01 | _ | | | | | (UG/L) | (00, 110) | (, -, | , - , | (00)110) | | | | | <.1
 | <.001 | <.001 | <.1
 | <.001 | <.001
 | <.1
 |
<.001 | <.001 | <.1
 | <.01 | | DATE | MALA-
THION,
TOTAL
(UG/L) | | <.001 METH- OXY- CHLOR, DIS- | | | <.001 METHYL PARA- THION, DIS- SOLVED (UG/L) | <.001 | <.1 | | <.001 METHYL TRI- THION, TOTAL | <.1 | | | DATE
7- 8-81
7- 8-81 | MALA-
THION,
TOTAL | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | <.001 METH- OXY- CHLOR, DIS- SOLVED | METH-
OXY-
CHLOR,
TOTAL | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL. | METHYL
PARA-
THION,
DIS-
SOLVED | <.001 METHYL PARA- THION, TOTAL | <.1 PARA- THION, TOT. IN BOTTOM MATL. | <.001 METHYL TRI- THION, DIS- SOLVED | <.001 METHYL TRI- THION, TOTAL | <.1
METHYL
TRI-
THION,
IOT. IN
BOTTOM
MATL. | <.01 MIREX, DIS- SOLVED | | 7- 8-81 | MALA-
THION,
TOTAL
(UG/L) | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-OXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | <.001 METHYL PARA- THION, TOTAL (UG/L) <.01 PER- THANE TOTAL | <.1 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) <.1
PER- THANE | <.001 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01 TOX- APHENE, | <.001 METHYL TRI- THION, TOTAL (UG/L) <.01 TOX- APPHENE, TOTAL | <.1 METHYL TRI- THION, IOT. IN BOTTOM MATL. (UG/KG) <.1 TOXA- PHENE, TOTAL IN BOT- IOM MA- TERIAL | MIREX,
DIS-
SOLVED
(UG/L) | ### TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED NATIVE SAMPLE | DATE | TOTAL
TRI-
THION
(UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DF
TOTAL
(UG/L) | 2,4,5-1
P DIS-
SOLVEI
(UG/L) | 2,4,5-1
TOTAL
(UG/L) | SOLVE
(UG/L | SILVEX
D TOTAL
) (UG/L) | FLUORO
(UG/I | O- PHYTO- K- PLANK- TON O CHROMO OM FLUOROM L) (UG/L) | |------------------------------------|---|--|--|---|---|--|---|---|---|--|-------------------------------------|---| | 7- 8-81
7- 8-81 | <.01
 | <.1
 | <.01 | <.01
 | | <.01
 | <.0 | 1,03 | | | | .5 .000 | | DATE SAM | PLE | | | | | В | OTTOM MATT | ERIAL PAR | ricle siz | E | | | | JUL , 1981
08 A
08 B
08 C | % FINE | ETER (MM)
R BY WEIGH
R BY WEIGH
R BY WEIGH | Т | 1.00
96.5
97.5
99.0 | 96.0 9
96.5 9 | 0.25 0.1
0.5 37.0
5.0 28.0
3.5 62.0 | 0 2.0 | 0.033

2.0 | 0.016

 | 0.008

 | 0.004

 | 0.002 0.001

 | | | | | | | ELU | TRIATE SA | MPLE-A | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | DIS-
D SOLVED | BERYI
C LIUM,
DIS-
SOLVEI
(UG/L
AS BE) | CADMIU
DIS-
SOLVED
(UG/L | DIS- | , COPPER, DIS- D SOLVED (UG/L | | 7- 8-81 | 1000 | 225 | 720 | 2.2 | 1.2 | 3.4 | .08 | 3 | 10 | 1 | 30 | 2 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE DIS- SOLVED (MG/L AS CN) | PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7- 8-81 | 0 | 20 | .1 | 2 | 0 | 50 | .00 | 4 | <.1 | <.1 | <.001 | <.1 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DI-
ZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | FNDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7- 8-81 | <.001 | <.001 | <.001 | .03 | .001 | <.001 | <.001 | <.01 | <.001 | <.001 | <.001 | <.01 | | | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 7 - 8-81 | <.01 | <.01 | <.01 | <.01 | <.01 | <.01 | <.1 | <.01 | <.01 | <.01 | <.01 | <.01 | ### TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291608089571500 - GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED ELUTRIATE SAMPLE-B | DATE
7- 8-81 | TIME
1000 | SETTLE-
ABLE
MATTER
(ML/L/
HR)
450 | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L) | GEN,
AMMONIA O
DIS-
SOLVED
(MG/L | GEN, GE
RGANIC MO
DIS- OF
SOLVED I
(MG/L | ONIA + PI
RGANIC
DIS. :
(MG/L | PHOS-
HORUS, DIS-
SOLVED
(MG/L
AS P) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BERYL-
LIUM, C
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-MIUM,
DIS-SOLVED
(UG/L
AS CR) | DIS-
SOLVED
(UG/L | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---------------------------|--------------------------------------|--|--|--|--|--|---|---|---
--|--|--|--| | DATE | MAN
NES
DI
SOL
(UG
AS | E, MERC
S- DIS
VED SOLV
L/L (UG | - DIS-
ED SOLVE
/L (UG/ | DIS-
D SOLVED
L (UG/L
II) AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-, | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | DDD,
DIS-
SOLVED
(UG/L) | | | DATE | DDE,
DIS-
SOLVEI
(UG/L) | (UG/L) | (UG/L) | ELDRIN S
DIS-
SOLVED
(UG/L) | ENDO-
ULFAN, EI
DIS-
SOLVED :
(UG/L) | DIS-
SOLVED (
(UG/L) | THION DIS- SOLVED (UG/L) | DIS-
SOLVED
(UG/L) | DIS-
SOLVED
(UG/L) | <.001 LINDAME DIS- SOLVED (UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | | | 7- 8-81
DATE
7- 8-8 | PA
TH
E
SC | THYL MERA- THOM, T | THYL RI- ION, MIR IS- DI LIVED SOL G/L) (UG | | DIS-
DIS-
D SOLVEI
(UG/L) | DIS-
D SOLVE
) (UG/L | DIS-
D SOLVI
) (UG/ | N 2,4-1
- DIS-
ED SOLVI
L) (UG/1 | DIS-
ED SOLVEI
L) (UG/L) | DIS
SOLV
(UG/ | FED SOLUTED (UG) | VED | | | | | | | | E | ELUTRIATE | SAMPLE-C | : | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | ICAL
HIGH
LEVEL
(MG/L) | GEN, AMMONIA OR DIS- SOLVED S (MG/L () AS N) A | TITRO- N. GEN, GEI GANIC MOR DIS- ORC OLVED DI MG/L (N. S N) AS | ITRO-
N,AM-
NIA + PI
GANIC
IS.
MG/L
S N) | PHOS-
HORUS, A
DIS-
SOLVED S
(MG/L
AS P) | ARSENIC
DIS-
SOLVED S
(UG/L
AS AS) | DIS-
SOLVED S
(UG/L
AS BE) 1 | (UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER, DIS- SOLVED (UG/L AS CU) | | | DATE
7- 8-81
DATE | TIME 1000 LEAL DISSOLV (UG/AS F | ABLE MATTER (ML/L/ HR) 300 MAN NES - DI ED SOI L (UG | DEMAND CHEM- ICAL HIGH LEVEL (MG/L) 500 GA E, MERCU S- DIS- VED SOLVE /L (UG/I | GEN, AMMONIA OR DIS- SOLVED S (MG/L (, AS N) A .52 RY NICKEL, DIS- D SOLVED (, (UG/L) | TITRO- N. GEN, GEI GANIC MOR DIS- ORC OLVED DI MG/L (N. S N) AS | ITRO- N,AM- NIA + PI GANIC IS. (MG/L S N) // | PHOS-
HORUS, A
DIS-
SOLVED S
(MG/L | ARSENIC
DIS-
SOLVED S
(UG/L | LIUM, O
DIS-
SOLVED S
(UG/L | DIS-
SOLVED
(UG/L | MIUM,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | | 7- 8-81 | LEAL
DIS
SOLV
(UG/AS F | ABLE MATTER (ML/L/ HR) 300 MAN , NES - DI (ED SOI L (UG B) AS 0 | DEMAND CHEM- ICAL HIGH LEVEL (MG/L) 500 GA- E, MERCU S- UED SOLVE /L (UG/L) 10 E, DDT S- DIS- VED SOLVE S- DIS- S- DIS- S- DIS- S- DIS- S- DIS- S- S- DIS- S- S | GEN, AMMONIA OR DIS- SOLVED S (MG/L (AS N) A .52 RY NICKEL, DIS- DIS- DIS- (UG/L AS NI) 9 3 DI- C, AZINON, - TED SOLVED SOLVED SOLVED | ITRO- N. GEN, GEI GANIC MOD DIS- OR OLVED D: MG/L (A S N) AS SELE- NIUM, DIS- SOLVED (UG/L AS SE) 0 DI- ELDRIN DIS- | ITRO- N,AM- NIA + PI GIA + PI GIA + PI GIS- SINC, DIS- SOLVED (UG/L AS ZN) 50 ENDO- SULFAN, DIS- | PHOS-HORUS, DIS- SOLVED (MG/L AS P) .07 CYANIDE DIS- SOLVED (MG/L AS CN) .00 ENDRIN DIS- | ARSENIC DIS- SOLVED S (UG/L) 2 PHENOLS (UG/L) 0 , ETHION DIS- D SOLVE | LIUM, ODIS- SOLVED S (UG/L S AS BE) A PCB, DIS- SOLVED (UG/L) <.1 HEPTA- CHLOR, DIS- SOLVED SOLVED SOLVED SOLVED | DIS- SOLVED PCN, DIS- SOLVED (UG/L) <.1 HEPTA - CHIOR , EPOXII DIS- SOLVED S | MIUM, DIS- SOLVED (UG/L AS CR) 30 ALDRIN DIS-, SOLVED (UG/L) <.001 ALDRIN DIS-, SOLVED (UG/L) SOLVED DIS DIS DIS DIS DIS DIS DIS DIS DIS DI | DIS- SOLVED (UG/L AS CU) 2 CHLOR- DANE, DIS-, SOLVED (UG/L) <.1 MALA- THION, DIS- ED SOLVED SOLVED SOLVED SOLVED | | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |------------|--|---|---|---|---|--|--|--|--|--|--|---| | 7-13-79 | 1050 | 10800 | 7.5 | <1.0 | 78 | 38000 | 1200 | 1100 | 100 | 240 | 2000 | 16 | | DATE | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | | 7-13-79 | 115 | 0 | 94 | 540 | 3500 | 2 | 15 | .89 | .02 | .25 | .25 | | | DATE | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | | | 7-13-79 | 67 | .60 | .56 | .86 | .81 | 1140 | 1.8 | .14 | .10 | 2 | 1 | | | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | 7-13-79 | 1 | 9 | 10 | 10 | 0 | 2 | 0 | 2 | .61 | <20 | 0 | <20 | | DATE | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) |
COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | 7-13-79 | 20 | 0 | 46 | 43 | 3 | 38 | 10 | 7 | 7 | NTD | 140 | 90 | | DATE | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | | 7-13-79 | 10 | 80 | 360 | .1 | .1 | .15 | 4 | 2 | 2 | 20 | <1 | 0 | | DA
7-13 | ATE (UG | M, ZIN 'AL TOT OT- REC MA- ERA LIAL (UG | AL PEN
OV-REC
BLE ERA | IS-
IDED ZIN
IOV- DI
IBLE SOI
I/L (UG | S- TOM
VED TER
S/L (UG
ZN) AS | OV.
OT- CARB
MA- ORGA
ITAL TOT
I/G (MG
ZN) AS | NIC CYAI
AL TO:
L (MC | MAL TERI
G/L (UC | TAL
BOT-
MA-
IAL PHEN
G/G
CN) (UG | OLS GRA
MET
/L) (MG | SE, GREAN AL TOT. YAL TOT. YAL TOT. YAL TOT. YAL | SE,
IN
MAT
VI-
RIC | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANF,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |----------------------------|--|--|---|--|--|---|--|--|--|---|--|-------------------------------------| | 7-13-79
7-13-79 | 130 | .2 | .00 | 190
 | .0 | .00 | .0 | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-13-79
7-13-79 | .0
 | .000 | .000 | 24
 | .000 | .000 | 16
 | .000 | .000 | .0 | .07 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | ENDRIN,
TOTAL | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ETHION
DIS-
SOLVED
(UG/I.) | | 7-13-79
7-13-79 | .00 | .0
 | .000 | .000 | 1.4 | .000 | .000 | .0 | .00 | .00 | .0
 | .00 | | DATE | ETHION,
TOTAL
(UG/L) | TERIAL | DIS- | HEPTA-
CHLOR,
TOTAL
(UG/L) | TOM MA-
TERLAI | DIS-
SOLVED | EPOXID:
TOTAL | MATL. | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | TERIAL | MALA-
THION
DIS-
SOLVED | | 7-13-79
7-13-79 | .00 | 0.0 | | | | | | | | | | | | | | | .00 | •00
0 | | | • • • | 00 .0 | .00 | | | _ | | DATE | MALA-
THION
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | METH-
OXY-
CHLOR,
DIS- | | METH-
OXY-
CHLOR,
TOT. IN
BOTTON
MATL. | METHYL PARA- THION, DIS- SOLVEL | METHY PARA- THION TOTAL | METHYL PARA- L THION, TOT. IN BOTTOM MATL. | | | | | | DATE
7-13-79
7-13-79 | MALA-
THION
TOTAL | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL | METH-
OXY-
CHLOR,
TOT: IN
BOTTON
MATL
(UG/KG) | METHYI PARA- N THION, M DIS- SOLVEI (UG/L) | METHY PARA-THION TOTAL (UG/L | METHYL PARA- L THION, TOT. IN , BOTTOM MATL.) (UG/KG) | METHYL TRI- THION, DIS- SOLVED | METHYL TRI- THION, TOTAL | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL. | MIREX,
DIS-
SOLVED | | 7-13-79 | MALA-THION, TOTAL (UG/L) | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | METH-
OXY-
CHIOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT: IN
BOTTON
MATL
(UG/KG) | METHYI , PARA- N THION, M DIS- SOLVEI (UG/L) | METHY PARA-THION TOTAL (UG/L | METHYL PARA- L THION, TOT. IN BOTTOM MATL.) (UG/KG) 0 .0 PER- THANE | .00 METHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE, | METHYL, TRI- THION, TOTAL (UG/L) | METHYL
TRI -
THION,
TOT. IN
BOITOM
MATL.
(UG/KG) | MIREX, DIS- SOLVED (UG/L) | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK--CONTINUED NATIVE SAMPLE | DATE
7-13-79
7-13-79 | TOTAL TRI- THION (UG/L) | | - 2,4-D
- DIS-
L SOLVE
(UG/L | 2,4-D
D TOTAL
) (UG/L | SOLVED
) (UG/L)
0 | 2, 4-1
) TOTA
(UG/ | L SOLL
L) (UG | S- 2,4,5
VED TOTA
/L) (UG/ | AL SOLVI
'L) (UG,
)0 | S- SILVI
ED TOTA
/L) (UG) | AL FLUC
/L) (UC | O- PHYTO-
IK- PLANK-
I TON
IMO CHROMO | |----------------------------|---|--|--|---|---|--|--|---|--|--|-------------------------------------|--| | | | | | | P | TOTATE | SHIPLE | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSENI | DIS- | CADMIU
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
M MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPEI
DIS- |) | | 7-13-79 | 1050 | 500 | 200 | 2.2 | 1.8 | 4.0 | 3 | 10 | 3 | 0 | 2 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHIOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-13-79 | 0 | 1100 | .3 | 0 | 0 | 20 | .00 | 4 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT, A
DIS-
SOLVED
(UG/L) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN S
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-13-79 | .000 | .000 | .000 | .13 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | | | | | .00 .00 7-13-79 .00 .00 .00 .00 .00 TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295909090011200 INDUSTRIAL CANAL, 1.6 MILES
UPSTREAM FROM GATES AT NEW ORLEANS, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOITOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |---------|---|---|--|---|--|--|---|--|--|--|--|--| | 7-13-79 | 1115 | 7700 | 7.6 | <1.0 | 65 | 68000 | 820 | 760 | 63 | 160 | 1300 | 50 | | DATE | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | | 7-13-79 | 72 | 0 | 59 | 350 | 2400 | 6 | 6 | .06 | .02 | .21 | .21 | | | DATE | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | + ORG. | | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC | | | 7-13-79 | 103 | .65 | .33 | .86 | .54 | 1750 | .94 | .03 | 2 | <1 | 2 | | | DATE | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | | 7-13-79 | 8 | 10 | 10 | 0 | N ID | 0 | ND | 1.02 | ND | 0 | ND | 0 | | DATE | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANCA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | | 7-13-79 | 0 | 6 | 4 | 2 | 0 | 10 | 9 | 9 | ND | 0 | 110 | 30 | | D≱ | NES
DI
SOI
(UC | IGA- NES
SE, REC
IS- FM F
IVED TOM
G/L TEI | XXV. TO:
8OT- REX
MA- ERV
RIAL (UX | TAL MERC
COV- DI
ABLE SOI
G/L (UC | CURY FM B
IS- TOM
VED TER | OV. NICK
OT- TOT
MA- REC
CIAL ERA
S/G (UG | AL PENOV- REC
BLE ERA
L/L (UC | JS-
NDED NICK
COV- DIS
ABLE SOI
G/L (UC | | OV.
OT- SEL
MA- NIU
IAL TOI
/G (UG | M, PEN
AL TOT | M,
SS-
DED
PAL
S/L | | 7-13 | 3-79 | 80 | 39 | .1 | .1 | .25 | 3 | 2 | <2 | 0 | <1 | 0 | | | SEI
NII
TO
IN I
TOM
TEI
ATE (U | BOT- REX
MA- ERA
RIAL (UC | NC, SI
PAL PEI
COV- REX
ABLE ER
G/L (U | ABLE SOI
G/L (UC | NC, FM E
IS- TOM
LVED TEF
S/L (UC | XOV.
BOT- CARE
MA- ORGA
RIAL TOI
B/G (MC
ZN) AS | NIC CYAL
TAL TO:
L/L (MC
C) AS | IN E
NIDE TOM
FAL TERI
G/L (UX
CN) AS | TAL
BOT-
MA-
IAL
G/G PHEN
CN) (UG | GRA
OLS MET
(/L) (MC | SE, GREA
TAL TOT.
TOV. BOT
TOVI- GRA
TRIC MET
G/L) (MG/ | SE,
IN
MAT
VI-
TRIC
(KG) | | /-13 | , 13 | U | 20 | U | 20 | 0 | .0 | .00 | 0 | 0 | 0 | 0 | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295909090011200 INDUSTRIAL CANAL, 1.6 MILES UPSTREAM FROM GATES AT NEW ORLEANS, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|---|--|--|---|--|--|--|---|---|---|---|--| | 7 - 13-79
7 - 13-79 | - -
92 | .0 | •00 | 150 | .0 | •00
 | .0 | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-13-79
7-13-79 | 30
 | .000 | .000 | 6
 | .000 | .000 | 1.1 | .000 | .000 | .0 | .05 | | | DATE | DI- | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA- | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO- | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ETHION
DIS-
SOLVED
(UG/L) | | 7-13-79
7 - 13-79 | .00 | .0 | .000 | .000 | 1.5 | .000 | .000 | .0 | .00 | .00 | .0 | .00 | | | | | | | | | | | | | | | | DATE | ETHION,
TOTAL
(UG/L) | TERIAL | HEPTA-
CHIOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DIS-
SOLVED | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | MATL. | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | TERIAL | MALA-
THION
DIS-
SOLVED | | DATE 7-13-79 7-13-79 | TOTAL | TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR,
DIS-
SOLVED | CHLOR,
TOTAL | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL | CHLOR EPOXIDE DIS- SOLVED | CHLOR
EPOXIDE
TOTAL | CHLOP
EPOXIDE
TOT. IN
BOTTOM
MATL. | DIS-
SOLVED | LINDANE
TOTAL | TOTAL IN BOT- TOM MA- TERIAL | MALA-
THION
DIS-
SOLVED | | 7-13-79 | TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL | CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS- | CHLOR,
TOTAL
(UG/L) | CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L) | CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOP
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | TOTAL (UG/L) .00 MALA- THION, | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL | CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS- SOLVED | CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL | CHLOR, TOTAL IN BOT- TOM MA- TERIAL
(UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED | CHLOR EPOXIDE TOTAL (UG/L) .000 METHYL PARA- THION, TOTAL | CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. | DIS-SOLVED (UG/L)000 METHYL TRI-THION, DIS-SOLVED | LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. | MALA-THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED | | 7-13-79
7-13-79
DATE
7-13-79 | MALA-THION, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL (UG/L) .00 | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) .000 METHYL PARA- THION, TOTAL (UG/L) | CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) METHYL PARA-THION, TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | DIS-SOLVED (UG/L)0000 METHYL TRI-THION, DIS-SOLVED (UG/L)000 | LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT- IN BOTTOM MATL. (UG/KG) .0 | MALA-THION DIS- SOLVED (UG/L) MIREX, DIS- SOLVED (UG/L) | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295909090011200 INDUSTRIAL CANAL, 1.6 MILES UPSTREAM FROM GATES, AT NEW ORLEANS, LA--CONTINUED NATIVE SAMPLE | DATE | TOTAL
TRI -
THION
(UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | |--------------------|-----------------------------------|--|------------------------------------|---------------------------|------------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|----------------------------|---|---| | 7-13-79
7-13-79 | .00 | .0
 | .00 | .00 | .00 | .00

UTRIATE SA | .00
MPLE | .00 | .00 | .00
 | 2.24 | .000 | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN
DEMAND
CHEM-
ICAL
HIGH
LEVEL
(MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | ORGANIC | ARSENI | DIS-
SOLVED
(UG/L | CADMIU
DIS-
SOLVED
(UG/L
AS CD) | DIS- | COPPEI
DIS-
SOLVEI
(UG/L
AS CU) |) | |---------|---|--|--|---|---|--|---|---|--|--|---|--| | 7-13-79 | 1115 | 520 | 120 | 3.9 | 9.1 | 13 | 1 | 0 | 0 | 0 | 2 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVEI
(UG/L
AS MN) | MERCUR
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) | (MG/L | PHENOIS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-13-79 | 0 | 810 | .1 | 2 | 0 | 20 | .00 | 7 | .0 | .0 | .00 | .00 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT,
DIS-
SOLVED
(UG/L) | DIS- | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-13-79 | .000 | .000 | .000 | .09 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA- | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS- | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | | | | | | 7-13-79 | •00 | .00 | •00 | .00 | .00 | .00 | .00 | .00 | | | | | # TABLE 9.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET 300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLEANS NATIVE SAMPLE | DATE | C
C
E
A | | | LE ICA
TER (H)
L/ LEVI | AND, TOTAL BOTTERL) TERL | TAL HAI
TOM NES
A- (M
TAL A | RD~ NEX
SS NON
G/L BON
S (MK | CAR- DIS
ATE SOI
G/L (MC | CIUM SI
S- DI
JVED SOI
S/L (MK | IS- DIS
LVED SOLV
3/L (M | | |---------|---|---|--|---|--|--|---|---|---|--|--| | 7-13-79 | 1145 | 10000 | <7. 5 | 1.0 | 73 75 | 5000 | 1100 | 1000 | 84 | 210 | 1800 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | AS | CAR- I
BONATE
FET-FLD
(MG/L
AS CO3) | FIELD
(MG/L
AS | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
SUS- | VOLA-
TILE,
SUS- | SOLIDS, VOIA- TILE, SUS- PENDED (MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | 7-13-79 | 73 | 77 | 0 | 63 | 460 | 3400 | 13 | 6 | 7 | .06 | .02 | | DATE | NITRO
GEN,
AMMONI
TOTAI
(MG/1
AS N) | , AMMONIA
IA DIS-
L SOLVED
L (MG/L | IN BOT. | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | ORGANIC | GEN,AM
MONIA | - GEN, NHA
+ + ORG.
C TOT IN
BOT MAY
(MG/K | NITRO
GEN,
I TOTAL | | | | 7-13-79 | .2 | .21 | 69 | •51 | .45 | .72 | .66 | 1500 | | 80 | | | | PHOS-
PHORUS
TOTAL
(MG/L | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L | ARSENIC
TOTAL
(UG/L | ARSENIC
SUS-
PENDED
TOTAL
(UG/L | ARSENIC
DIS-
SOLVED
(UG/L | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L | BERYL-
LIUM,
DIS-
SOLVED
(UG/L | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L | | DATE | AS P) | AS P) | AS AS) | AS AS) | AS AS) | AS AS) | AS BE) | AS BE) | (UG/G) | AS CD) | AS (TD) | | 7-13-79 | 9 .30 | .12 | 2 | 1 | 1 | 6 | 10 | 10 | 0 | <2 | 0 | | DATE | CADMIUM
DIS-
SOLVE
(UG/L
AS CD) | TOM MA-
D TERIAL
(UG/G | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER, RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | | 7-13-79 | 9 <2 | .76 | ND | 0 | ND | 7 | 0 | 23 | 20 | 3 | 16 | | DATE | IRON,
DIS-
SOLVE
(UG/L
AS FE | (UG/L | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/I,
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/I,
AS HG) | | | 7-13-7 | 9 10 | 0 8 | 7 | <2 | 40 | 100 | 30 | 70 | 280 | .3 | | | D | MERCU
DIS
SOLV
(UG/ | - TOM MA-
ED TERIAL
L (UG/G | NICKEL, TOTAL RECOV- ERABLE (UG/L | (UG/L | NICKEL,
DIS-
SOLVED
(UG/L | TOM MA-
TERIAI
(UG/G | SELE-
NIUM,
TOTAL
(UG/L | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L | SOLVET
(UG/L | TERIAI | •
5 | | DAT | | | | AS NI) | AS NI) | - | · | · | AS SE) | | | | 7-13- | 79 | .3 .11 | . 4 | 3 | <2 | 15 | 5 <1 | . 0 | <1 | (|) | #### TABLE 9.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET ###
300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLFANS, LA--CONTINUED | DATE | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOIS
(UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | | |---------------------------------------|--|---|--|--|--|--|---|--|---|---|--|--| | 7-13-79 | 40 | 10 | 30 | 100 | 5.6 | .00 | 0 | 2 | 0 | 0 | | | | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 7-13-79 | | | .00 | 36 | | .00 | .0 | | .000 | .0 | | .0 | | 7-13-79 | 9 12 | 0.0 | | | .0 | | | .000 | | | .0 | | | D A ʻ | CHLOI
DANE
TOTA
IN BO
TOM MI
TERLI
IE (UG/KO | ,
L
T- DDD,
A- DIS-
AL SOLVEI | | | - DDE,
- DIS-
L SOLVE | DDE,
D TOTAL | | - DDT,
- DIS-
L SOLVE | | TERIA | DI-
- AZINON
- DIS-
I SOLVE | D | | 7-13-
7-13- | | .0
00 | •00 | 0 2.1 | .00 | •00 | | | 0 | 0 .0 | | | | | | • | | | ••• | | | •00 | • | | •01 | | | | | DT_ | | | DT- | | | ENTO | | | | | | DATE | DI- | TOM MA-
TERIAL | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- I
ELDRIN T
TOTAL | OM MA-
TERIAL S | ENDO-
SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO- I
SULFAN, I
TOTAL | ENDO-
SULFAN,
TOTAL
EN BOT- E
COM MA-
TERIAL
(UG/KG) | NDRIN,
DIS- I
SOLVED
(UG/L) | INDRIN, 7 | OM MA-
TERIAL S | THION
DIS-
OLVED
(UG/L) | | 7-13-79 | DI-
AZINON,
TOTAL | AZINON,
TOTAL
IN BOT- I
TOM MA-
TERIAL S | ELDRIN
DIS-
SOLVED
(UG/L) | DI- I
ELDRIN T
TOTAL | IDRIN, TOTAL IN BOT- S OM MA- TERIAL S (UG/KG) | SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO- I
SULFAN, I
TOTAL | OULFAN,
TOTAL
IN BOT- E
OM MA-
TERIAL | DIS- I
SOLVED
(UG/L) | INDRIN, 7 | TOTAL
N BOT- E
OM MA-
TERIAL S | DIS-
COLVED
(UG/L) | | | DI-
AZINON,
TOTAL
(UG/L) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ELDRIN
DIS-
SOLVED
(UG/L) | DI- I
ELDRIN I
TOTAL
(UG/L) (| IDRIN, TOTAL N BOT- S OM MA- TERIAL S (UG/KG) | SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO- I GULFAN, I TOTAL (UG/L) | SULFAN, TOTAL IN BOT- E TOM MA- TERIAL (UG/KG) | DIS- I
SOLVED
(UG/L) | NDRIN, 7 TOTAL (UG/L) | TOTAL IN BOT- E OM MA- TERIAL S (UG/KG) (| DIS-
OLVED
(UG/L) | | 7-13-79
7-13-79 | DI- AZINON, TOTAL (UG/L) .00 EIHION, TOTAL (UG/L) | AZINON, TOTAL IN BOT- TERIAL (UG/KG) O ETHION, TOTAL IN BOT- TOM MA- TERIAL STRING TOTAL IN BOT- TOM MA- TERIAL | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED | DI I ELDRIN TOTAL (UG/L) (.000 HEPTA-CHLOR, TOTAL | ELDRIN, TOTAL N BOT- S OM MA- TERIAL S (UG/KG) .3 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED | ENDO- I SULFAN, T TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL | EULFAN, TOTAL IN BOT- F OOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. | DIS- I
SOLVED
(UG/L)

.00
LINDANE
DIS-
SOLVED | ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL | TOTAL N BOT- E OM MA- TERIAL S UG/KG) O LINDANE TOTAL IN BOT- TOM MA- TERIAL | DIS- OLVED (UG/L)00 MALA- THION DIS- SOLVED | | 7-13-79
7-13-79
DATE
7-13-79 | DI- AZINON, TOTAL (UG/L) .00 EIHION, TOTAL (UG/L) | AZINON, TOTAL TOTAL TOTAL TOM MA- TERIAL (UG/KG) ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- THION, TOTAL IN BOT- THION, TOTAL IN BOT- | ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L) | DI- I ELDRIN T TOTAL (UG/L) (.000 HEPTA- CHLOR, TOTAL (UG/L) .000 | ELDRIN, TOTAL N BOT- OM MA- TERIAL S (UG/KG) .3 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L) | ENDO- I SULFAN, TOTAL (UG/L)000 CHLOR EPOXIDE TOTAL (UG/L) .000 | EULFAN, TOTAL IN BOT- BOTTOM MATL. (UG/KG) .0 | DIS- I SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L) | LINDANE TOTAL (UG/L) .000 | TOTAL N BOT- OM MA- TERIAL OUG/KG) O LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 | DIS- OLVED (UG/L) 00 MALA- THION DIS- SOLVED (UG/L) | #### TABLE 9. -- WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET ## 300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLEANS, LA--CONTINUED #### NATIVE SAMPLE | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TERIAL | TRI-
THION,
DIS-
SOLVED | |--------------------|---|--|---|---|---|--|--|---|--|--|---|--| | 7-13-79
7-13-79 | .00 | .0 | .00 | .00 | .0 | .00 | .00 | .00 | .0 | .0 | .0 |
•00 | | DATE | TOTAL
TRI-
THION
(UG/L) | TRI - THION TOTAL IN BOT TOM MA TERIA (UG/KG | - 2,4-D,
- DIS-
L SOLVEI | 2,4-D
TOTAL | SOLVEI | P 2, 4-1 | L SOI | 5-T
S- 2,4,5
VED TOT
G/L) (UG | SILV
5-T DI
AL SOLV | S- SILV | TAL FLU | TO- PHYTO-
NK- PLANK-
N TON | | 7-13-79 | | .0 | | .00 | | | 00 | - | • | | .00 2 | .62 .000 | | 7-13-79 | • | | .00 | | .00 | , | | .00 | | 00 | | | | | | | | | E | LUTRIATE | SAMPLE | | | | | | | DATE | TIME | SEITLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSEN
DIS-
SOLVE
(UG/I
AS AS | DIS-
D SOLVE
L (UG/L | , CADMI
DIS
D SOLVE
(UG/L | DIS-
D SOLVI
(UG/1 | M, COPPI
- DIS-
ED SOLVI
L (UG/1 | -
30
L | | 7-13-79 | 1145 | 510 | 140 | 1.9 | 1.6 | 3.5 |] | . 0 | 0 | (|) : | 2 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS- | NICKEL, DIS- SOLVED (UG/L AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHIOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-13-79 | 3 | 780 | .2 | 2 | 0 | 30 | .00 | 2 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS-
SOLVED S | DIS- | DI-
ELDRIN :
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-13-79 | .000 | .000 | .000 | .06 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | DIS~
SOLVED S | DIS- | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI -
THION
DIS-
SOLVED
(UG/L) | | | | | .00 .0 .00 7-13-79 .00 .00 .00 .00 .00 TABLE 9.--WATER-QUALITY DATA, INNER HARBOR
NAVIGATION CANAL AND MISSISSIPPI RIVER-CULF OUTLET 300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5), NEAR NEW ORLEANS, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D.
TOTAL
IN
BOTTOM
MA-
TERIAL
(MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |---------|--|--|--|--|---|---|---|---|--|---|--| | 7-13-79 | 1216 | 14700 | 7.4 | <1.0 | 240 | 180000 | 1600 | 1500 | 120 | 310 | 2700 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NON-
VOLA- | SOLIDS,
VOIA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
CEN,
NITRITE
TOTAL
(MG/L
AS N) | | 7-13-79 | 110 | 87 | 0 | 71 | 700 | 5000 | 14 | 2 | 12 | .06 | .04 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | IN BOT. | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC | GEN, AN
MONIA
ORGANI | H GEN, A
+ MONIA
C ORGAN
DIS. | M- GEN, N
1 + + ORG
HIC TOT I
BOT M
/L (MG/ | H4
NITRO
NGEN,
AT TOTAL
KG (MG/L | :
: | | | 7-13-79 | .23 | .19 | 73 | •55 | .49 | .78 | .6 | 8 460 | 0 .88 | 1 | | | DATE | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/G
AS AS) | LIUM, TOTAL RECOV- ERABLE (UG/L | BERYL-
LIUM,
DIS-
SOLVED
(UG/L | RECOV.
FM BOT- | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | | 7-13-79 | .14 | .09 | 2 | 1 | 1 | 10 | 10 | 10 | 0 | NID | 0 | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAI
(UG/G) | - VALENT,
- DIS.
L (UG/L | FRABLE
(UG/L | PENDED
RECOV- | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | | 7-13-79 | ND | .32 | < 20 | 10 | ND | 11 | 0 | 150 | 150 | <2 | 18 | | Ē | D
SC
(U | ON, TO
IS- RE
ILVED EX
IG/L (U | CAD, S
OTAL PI
CCOV- RI
RABLE EI
UG/L (U | 200V- I
RABLE SO
NG/L (U | RI
EAD, FM
DIS- TO
DLVED TI
UG/L (1 | ECOV. 1
BOT- 1
M MA- 1
ERIAL 1
UG/G | NESE, 1
NOTAL
RECOV- 1
ERABLE 1
(UG/L | SUS- N
PENDED
RECOV. S
(UG/L | IANGA- NI
JESE, RI
DIS- FM
SOLVED TON
JUG/L TI | ERIAL (| RCURY
OTAL
ECOV-
RABLE
UG/L
S HG) | | 7-1 | .3-79 | 20 | 10 | 9 | <2 | 15 | 80 | 6 0 | 20 | 270 | .1 | | | 1
SC
(U | RECURY FM OIS- TON OLVED TH | BOT- TO
1 MA- RI
ERIAL EI
JG/G (1 | CKEL, SECONDARY OF THE COORD | ECOV- D'
RABLE SI
UG/L (1 | CKEL, FI
IS- TO
OLVED '
UG/L | OM MA- 1
FERIAL '
(UG/G | SELE-
NIUM, F
IOTAL 1
(UG/L | SUS- NI
PENDED I
OTAL SO
UG/L (I | ELE- N
TUM, T
DIS- IN
DLVED TO
UG/L T | ELE-
IUM,
OTAL
BOT-
M MA-
ERIAL
UG/G) | | ,-1 | .3 17 | • 1 | •02 | U | , | ~~ | 20 | ~1 | U | *1 | U | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5), NEAR NEW ORLEANS, LA--CONTINUED | E | TO
RI
EI
(1 | OTAL PEN
OCOV- REC
RABLE ERA
OG/L (UC | JS-
VDED ZIN
DOV- DI
ABLE SOI
G/L (UC | ZING
RECO
C, FM B
IS- TOM I
VED TER
G/L (UG
ZN) AS | OV.
OT- CARB
MA- ORGA
IAL TOT
/G (MG | NIC CYAN
AL TOT | TO:
IN F
IDE TOM
TAL TER!
G/L (U | G/G PHE | GRA
VOLS MET | ASE, GREATAL TOTA
COV. BOTAVI- GRA
TRIC MET | SE,
IN | | |--------------------|---|---|---|--|--|---|--|--|--|---|---|------------------------------------| | 7-1 | .3-79 | 110 | 80 | 30 | 53 5. | 6 .0 | 00 | 0 | 5 (|) (|) | | | DATE | OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BÖT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | | 7-13-79 | | | .00 | 11 | | .00 | .0 | | .000 | •0 | | .0 | | 7-13-79
DATE | 240 CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | .0
DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | .000
DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI - AZINON, DIS- SOLVED (UG/L) | | | 7-13-79
7-13-79 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .00 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI - I ELDRIN I TOTAL | DI-
ELDRIN,
TOTAL
IN BOT- S
IOM MA-
TERIAL S | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO- | ENDO-
SULFAN,
TOTAL | ENDRIN, | | ENDRIN, TOTAL, IN BOT- | ETHION
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .00 | .0 | .000 | .000 | .0 |
•000 | .000 | .0 | .00 | .00 | .0 | .00 | | DATE | ETHION
TOTAL
(UG/I | TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED |
HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
DIS- | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | MATL. | :
 LINDANE
 DIS- | LINDANE
TOTAL
(UG/L) | LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS-
SOLVED | | 7-13-79
7-13-79 | .00 | | .000 | .000 | •0
 | .000 | .000 | 0. 0 | .000 | .000 | .0 | .00 | | DATE | MALA-
THIOI
TOTAI
(UG/) | MALA-
THION,
TOTAL
IN BOT-
N, TOM MA-
L TERIAL | METH-
OXY-
CHLOR,
DIS-
SOLVED | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | METHYL
PARA-
THION, | METHYI PARA- THION, | METHYL PARA- L THION, TOT. IN BOTTOM MATL. | METHYL
TRI-
THION,
I DIS-
SOLVED | METHYL
TRI-
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIRFX,
DIS-
SOLVED
(UG/L) | | 7-13-79 | | | | | | | | | | | | | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5), NEAR NEW ORLEANS, LA--CONTINUED #### NATIVE SAMPLE | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG | DIS-
SOLVED | |--------------------|---|--|--|---|---|--|--|---|--|--|--|--| | 7-13-79
7-13-79 | .00 | .0
 | .00 | .00 | .0 | .00 | .00 | .00 | .0 | .0
 | .0 | .00 | | DATE | TOTAL
TRI -
THION
(UG/L) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | - 2,4-d,
- dis-
L solvei | 2,4-D
TOTAL | SOLVEI | ?
2, 4-I
O TOTAI | SOLV | S- 2,4,5
VED TOTA | SILVI
5-T DIS
AL SOLVI | S- SILV
ED TOT | AL FLUC | C-A CHIOR-B CO- PHYTO- IK- PLANK- I TON IMO CHROMO | | 7-13-79
7-13-79 | .00 | .0 | .00 | .00 | .00 | .00 | _ | • • • • • | _ | •• | | 05 .000 | | 1-13-15 | | | •00 | | •00 | | •00 | o – | •0 | - | | | | | | | | | | ELUTR | IATE SAME | PLE | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSENIO
DIS-
SOLVED
(UG/L
AS AS) | BERYL
C LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIU
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
M MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER
DIS- | • | | 7-13-79 | 1216 | 750 | 160 | 1.8 | 1.8 | 3.6 | 8 | 0 | 0 | 10 | 0 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-13-79 | 0 | 460 | .1 | 0 | 1 | 30 | .00 | 3 | .0 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DI-
ZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOIVED
(UG/L) | | 7-13-79 | .000 | .000 | .000 | .02 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | DIS- | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | | | | | .00 .0 .00 7-13-79 .00 .00 .00 TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295721089512700 MISSISSIPPI RIVER-GULF OUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |------------|--|---|---|---|---|---|--|--|--|--|--|---| | 7-13-79 | 1247 | 15 3 00 | 7.4 | <1.0 | 100 | 180000 | 1700 | 1600 | 120 | 330 | 2900 | 6.8 | | DATE | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA | | | 7-13-79 | 89 | 0 | 73 | 110 | 4900 | 0 | 11 | .06 | .02 | .20 | .19 | | | DATE | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO
GEN, AM
MONIA
ORGANI
DIS.
(MG/L
AS N) | - GEN,NH
+ + ORG.
C TOT IN
BOT MA | 4
NITRO
GEN,
T TOTAL | PHORUS
TOTAL | , DIS-
SOLVED | ARSENIC
TOTAL
(UG/L
AS AS) | TOTAL
(UG/L | | | 7-13-79 | 130 | .60 | .49 | .80 | .68 | 3 3 00 | .88 | .09 | .09 | 1 | 0 | | | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | 7-13-79 | 1 | 5 | <10 | <10 | 0 | <2 | 0 | <2 | .27 | < 20 | 0 | <20 | | DA | FM E
TOM
TEE | M, MIC
COV. HEX
BOT- VALI
MA- DI
RIAL (UC | M, COPI
(A- TO)
INT, REX
IS. ERA
G/L (U | TAL PEN
COV- REC
ABLE ERA
G/L (UC | S-
NDED COPP
COV- DIS | - TOM
VED TER
/L (UG | OV.
OT- IRO
MA- DI
IAL SOL | S- REC
VED ERA
/L (UG | AL PEND
OV- RECO
BLE ERAB
J/L (UG/ | ED LEAI
V- DIS
LE SOLV
L (UG/ | S- TOM M
/ED TERI
/L (UG/ | V.
T-
A-
AL
G | | 7-13 | -79 | 4 | 0 | 39 | 37 | 2 | 6 | 20 | 8 | 7 | < 2 | 10 | | DA | NEX
TO:
REX
ER/ | SE, NES
PAL SU
COV- PER
ABLE REX
G/L (UC | JS- NE
NDED D
COV. SO
G/L (U | NGA- NES
SE, REX
IS- FM E
LVED TOM
G/L TER | OV. TOI | AL MERC
OV- DI
BLE SOL
L/L (UG | TURY FMB
S-TOM
WED TER
S/L (UG | OV. NICK
OT- TOT
MA- REC
CIAL ERA | PEND
COV-RECO
BLE ERAB
G/L (UG/ | ED NICKI
V- DIS-
LE SOLV
L (UG, | - TOM M
/ED TERI
/L (UG/ | V.
T-
A-
AL
G | | 7-13 | -79 | 70 | 50 | 20 | 250 | .2 | .2 | .07 | 5 | 4 | <2 | 0 | | D A | NIU
TO:
(U) | IM, PEI
PAL TO:
G/L (U | IM,
NI
US- TO
NDED IN I
TAL TOM
G/L TE | BOT- REX
MA- ER/
RIAL (U | PAL PEN
COV- REC
ABLE ERA
S/L (UC | IS-
IDED ZIN
IOV- DI | C, FMB
S-TOM
WED TER | OV.
OT- CARE
MA- ORGA
LIAL TOI | NIC CYANI
TAL TOTA
G/L (MG/ | L TERIA | AL
OT-
MA-
AL PHENO
/G | | | 7-13 | - 79 | <1 | 0 | 0 | 50 | 20 | 30 | 69 5 | .8 .0 | 0 (|) 1 | | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295721089512700 MISSISSIPPI RIVER-GULF OUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |--|---|--|---|--|--|---|--|--|---|---|---|--| | 7-13-79
7-13-79 | 240 | .0 | .00 | 0 | .0 | .00 | .0 | .000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7 - 13 - 79
7 - 13 - 79 | .0
 | .000 | •000 | .0 | •000 | .000 | .0 | .000 | .000 | .0
 | .00 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA- | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | | | ETHION
DIS-
SOLVED
(UG/L) | | 7-13 - 79
7-13 - 79 | •00 | .0 | .000 | .000 | •7
 | .000 | .000 | .0 | .00 | .00 | .0 | .00 | | DATE | ETHION,
TOTAL
(UG/L) | TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DIS- | HEPTA-
CHLOR
EPOXIDI
TOTAL
(UG/L) | MATL. | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .00 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .000 | .000 | .0 | .00 | | DATE | MALA-
THION
TOTAL
(UG/L | TERIAL | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | MATL. | THION, DIS- SOLVEI | METHY:
PARA-
THION | TOT. IN BOTTOM MATL. | • | METHYL
TRI -
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .00 | .0 | .00 | .00 | .0 | .00 | .00 | .0 | .00 | .00 | .0 | .00 | | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TRI-
THION,
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .00 | .0 | .00 | •00
 | .0 | .00 | .00 | .00 | .0 | .0 | .0
 | .00 | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295721089512700 MISSISSIPPI RIVER-GULF COUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA--CONTINUED NATIVE SAMPLE | DATE
7-13-79
7-13-79 | | - TOM M
N TERI
L) (UG/K | N,
L
T- 2,4-
A- DIS
AL SOLV
G) (UG/ | = 2,4-
ED TOTA
(L) (UG/ | L SOLV
L) (UG/
0 | - 2,
ED TOI
L) (UG | 4-DP :
AL S
J/L) (| OLVED I | 4,5-T
OTAL SO | LVED TO | PF
PI
TVEX, CF
DTAL FI | OR-A CHLOR-B PHYTO- ANK- PLANK- ON TON RROMO CHROMO UOROM FLUOROM (UG/L) 4.89 .000 | |----------------------------|--|--|--|---|---|------------------------------------|---------------------------|---------------------------|------------------------------------|--|---|---| | | | | | | | ELUTRIAT | E SAMPLE | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC | - ARSEN | DIS-
D SOLVE
(UG/I | DIS
D SOLVE
(UG/I | - DIS-
D SOLVE
(UG/L | , COPPH
DIS-
DIS-
DISOLVE
(UG/I | ED
S | | 7-13-79 | 1247 | 420 | 210 | 4.0 | 12 | 16 | 2 | 0 | 0 | 10 | 1 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVEL
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L | MICKEL, DIS- SOLVED (UG/L AS NI) | SELE-
NIUM,
DIS-
SOLVEI
(UG/L
AS SE) | (UG/L | (MG/L | | | | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7-13-79 | 0 | 3100 | .2 | 1 | 0 | 30 | .00 | 3 | .0 | .0 | .000 | .0 | | ; | DDD, DIS- SOLVED | DDE,
DIS- | | DI-
AZINON,
DIS-
SOLVED
(UG/L) | DI- | ENDO-
SULFAN,
DIS-
SOLVED | ENDRIN,
DIS-
SOLVED | ETHION,
DIS-
SOLVED | HEPTA-
CHLOR,
DIS-
SOLVED | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED | LINDANE
DIS-
SOLVED | MALA-
THION,
DIS-
SOLVED | | | | | | | | (UG/L) | | .000 METH- OXY- CHLOR, DIS- SOLVED | .000 METHYL PARA- THION, DIS- SOLVED | .000 METHYL TRI- THION, DIS- SOLVED | MIREX, DIS- SOLVED | PARA-
THION,
DIS-
SOLVED | PER- THANE DIS- SOLVED | TOX-APHENE, DIS-SOLVED | TRI- THION DIS- SOLVED | .000 | .000 | .000 | .00 | (UG/L) .00 (UG/L) .00 DATE (UG/L) (UG/L) .00 .00 7-13-79 (UG/L) .00 (UG/L) .0 (UG/L) .00 (UG/L) TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-CULF OUTLET 295741090014200 INDUSTRIAL CANAL, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |------------|---|--|---|---|---|--|--|--|---|--|--|--| | 7-13-79 | 0937 | 862 | 7.5 | <1.0 | 12 | 37000 | 210 | 100 | 46 | 22 | 100 | 5.6 | | DATE | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RESIDUE
AT 105
DEG. C.
SUS- | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | | 7-13-79 | 127 | 0 | 104 | 73 | 190 | 35 | 16 | 19 | 1.6 | .02 | .07 | | | DATE |
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA 4
ORGANIC
DIS.
(MG/L
AS N) | GEN, NH-
+ ORG. | 4
NITRO
GEN,
T TOTAL | PHORUS
TOTAL | PHOS-
PHORUS,
DIS-
SOLVEI
(MG/L
AS P) | ARSENIC | | | 7-13-79 | .07 | 110 | .49 | .51 | .56 | .58 | 1250 | 2.2 | .21 | .10 | 2 | | | DATE | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | | 7-13-79 | 1 | 1 | 9 | 1 | 1 | 0 | <2 | 0 | <2 | •35 | <20 | 10 | | DATE | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LFAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | | 7-13-79 | NID | 13 | 0 | 5 | 3 | 2 | 15 | <10 | 5 | 5 | ND | 20 | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | | 7-13-79 | 60 | 50 | 7 | .1 | .1 | .08 | 3 | 3 | ND | 20 | 1 | 1 | | DA
7-13 | (UC | M, TOT
S- IN E
WED TOM
S/L TER | M, ZIN
FAL TOT
BOT- REC
MA- ERA
RIAL (UC | PAL PEN
COV- REC
BLE ERA
G/L (UC | JS-
VDED ZIN
XOV- DI
ABLE SOI
G/L (UC | S- ORGAN
LVED TOTA
G/L (MG/
ZN) AS (| NIC CYAN
AL TOT
/L (MG
C) AS | AL TERI
L (UC | TAL
SOT-
MA-
TAL
S/G PHEN
CN) (UG | /L) (MG, | SE, GREA
AL TOT.
OV. BOT!
VI- GRA
RIC MET!
/L) (MG/ | SF,
IN
MAT
VI-
RIC | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295741090014200 INDUSTRIAL CANAL, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | | ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHIOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |-----------------------------|---|--|---|--|--|--|--|--|---|--|--|---| | 7 - 13-79
7-13-79 |
13 | .0 | .00 | 40
 | .0 | .00 | .0 |
.000 | .000 | .0 | .0 | .0 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7-13-79
7-13-79 | 10 | .000 | .000 | 6.7
 | .000 | .000 | 1.4 | .000 | .000 | .0
 | .00 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- :
ELDRIN :
TOTAL | IOM MA-
TERIAL | ENDO-
SULFAN,
DIS- S
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS- F
SOLVED
(UG/L) | INDRIN, | TERIAL S | ETHION
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .01 | .0 |
•006 | .002 | 1.6 | .000 | .000 | .0 | .00 | .00
 | .0 | .00 | | DATE | ETHION,
TOTAL
(UG/L) | TERIAL | DIS- | HEPTA-
CHLOR,
TOTAL
(UG/L) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDI
TOTAL
(UG/L) | MATL. | :
LINDANE | LINDANE
TOTAL
(UG/L) | LINDANF
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION
DIS-
SOLVED
(UG/L) | | 7-13-79
7-13-79 | .00 | | .00 | .00 | 0 . 0 | .000 | .00 | | | .00 | 0 .0
 | .00 | | DATE | MALA-
THION
TOTAL
(UG/L | TERIAL | DIS- | METH-
OXY-
CHLOR
TOTAL
(UG/L | MATI | N THION M DIS- SOLVE | METH:
PARA-
THIOI
D TOTAL | TOT. I
N. BOTTO
L MATI | METHYL I, TRI- IN THION, IM DIS- ISOLVED | METHYL
TRI -
THION,
TOTAL
(UG/L) | METHYL
TRI -
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX, | | 7-13-79
7-13-79 | •00 | | .00 | .0 | 0 . | 000 | | | .00 | •00 | .0 | .00 | | DATE | MIREX,
TOTAL
(UG/L) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PARA-
THION,
DIS-
SOLVED
(UG/L) | | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PER-
THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TRI-
THION,
DIS-
SOLVED
(UG/I.) | | 7-13-79
7-13-79 | .00 | •0
 | .00 | .00 | .0
 | .00 | .00 | .00 | .0 | .0 | .0 | .00 | TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295741090014200 INDUSTRIAL CANAL LOCK, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK--CONTINUED NATIVE SAMPLE | DATE
7-13-79
7-13-79 | TOTAL TRI- THION (UG/L) .00 | TRI - THION, TOTAL IN BOT- TOM MA- TERIAI (UG/KG) | - 2,4-D,
- DIS-
L SOLVEI | 2,4-D, | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-D
TOTAL
(UG/L
.00
 | SOLV
) (UG/
- | - 2,4,5 ED TOTA L) (UG/ | L SOLVE | SILVED TOTAL) (UG/ | AL FLUOR | PHYTO- PLANK- TON CHROMO OM FLUOROM L) (UG/L) 2 .000 | |----------------------------|---|---|--|---|---|--|--|--|--|---|--|--| | | | | | | | | | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | | 7-13 - 79 | 0937 | 380 | 63 | 1.8 | 2.8 | 4.6 | 8 | 10 | 0 | 0 | 6 | | | DATE
7-13-79 | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | (UG/L | MERCUR
DIS-
D SOLVED
(UG/L | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVEL
(UG/L
AS ZN) | PHENOLS
(UG/L) | (UG/L) | , , | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-
DANF,
DIS-,
SOLVED
(UG/L) | | | 1-13-19 | U | 4200 | •0 | 3 | 1 | 20 | 2 | .0 | .0 | .00 | .0 | | | s |
DDD,
DIS-
SOLVED
(UG/L) | | DIS-
SOLVED : | DIS-'
SOLVED S | LDRIN S
DIS- | ENDO-
ULFAN, E
DIS-
SOLVED
(UG/L) | INDRIN, E
DIS-
SOLVED
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR, E
DIS- | HEPTA-
CHLOR
POXIDE DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7-13-79 | .000 | .000 | .000 | .17 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | (| METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | DIS- | MIREX, '
DIS-
SOLVED S | PARA-
IHION,
DIS-
SOLVED
(UG/L) | PER-
THANE A
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | | | | | .00 7-13-79 .00 .00 .00 .00 .00 .00 # TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY 292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | |----------|--|---|--|--|---|---|---|---|--|--|---|---| | 10-25-79 | 09 30 | 3120 | 8.1 | 15 | <1.0 | 600 | 47000 | 460 | 350 | 59 | 76 | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | | 10-25-79 | 500 | 25 | 131 | 0 | 107 | 190 | 860 | 14 | 14 | 0 | .00 | | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO
GEN
AMMON:
TOTAI
(MG/1
AS N) | , AMMONI
IA DIS-
L SOLVI
L (MG/I | GEN, NE TOTAL IN BOT D MAT. L (MG/KC | 4 NITRO
GEN
CORGAN
TOTA
(MG/ | , ORGAN
IC DIS
L SOLV
L (MG/ | , GEN,AM IC MONIA - ORGANI ED TOTAL L (MG/1 | 4- GEN,
+ MONI
IC ORGA
L DIS | AM- GEN,
IA + + OI
ANIC TOT
G. BOT
G/L (MC | RG.
IN
MAT
S/KG | | | | 10-25-79 | .01 | .04 | 1 .03 | 39 | .4 | 5 .3 | 4 .49 | | .37 63 | 350 | | | | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
SUS-
PENDED
RECOV.
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RFCOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | | 10-25-79 | .49 | .04 | .01 | 3 | 2 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | | DATE | CADMIUM
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | | 10-25-79 | 0 | 0 | .09 | 10 | 10 | 0 | 9 | 0 | 2 | 1 | 1 | | | I | RI
FM
TOI
T | M MA-
ERIAL S
UG/G (| RON, TO
DIS- RI
OLVED EI
UG/L (1 | EAD, S OTAL PI ECOV- RI RABLE EI UG/L (I | ECOV-
RABLE S
JG/L (| R
EAD, FM
DIS- TO
OLVED T
UG/L (| ECOV. NI
BOT- TO
M MA- RI
ERIAL EI
UG/G (1 | ESE, NOTAL : ECOV- PERABLE RUG/L (| SUS- NI
ENDED I
ECOV. SO
UG/L (1 | ANGA- NI
ESE, RI
DIS- FM
DIVED TOM
UG/L TI | ANGA-
ESE,
ECOV.
BOT-
M MA-
ERIAL
IG/G) | | | 10-2 | 25-79 | 13 | 20 | 4 | 4 | 0 | 15 | 80 | 80 | 0 | 4 50 | | | | TO
RI
E
()
DATE A | ECOV-
RABLE S
UG/L (
S HG) A | RCURY FM DIS- TO OLVED T UG/L (I S HG) A | BOT- TO
M MA- RI
ERIAL EI
UG/G (I
5 HG) AS | ECOV- D
RABLE S
JG/L (
S NI) A | CKEL, FM IS- TO OLVED T UG/L (S NI) A | M MA- N
ERIAL TO
UG/G (I
S NI) A | ELE- : IUM, P. OTAL TO UG/L (() S SE) A | SUS- NI
ENDED I
OTAL SO
UG/L (I
S SE) A | ELE- NI IUM, TO DIS- IN OLVED TO UG/L TI S SE) (I | ELE-
IUM,
DTAL
BOT-
4 MA-
ERIAL
UG/G) | | | 10-2 | 25-79 | •0 | .0 | .05 | 2 | 4 | 15 | 0 | 0 | 0 | 1 | | TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY 292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA--CONTINUED NATIVE SAMPLE | עם | : | ZINC,
TOTAL I
RECOV- I
ERABLE I
(UG/L | RECOV-
ERABLE S
(UG/L | ZINC, FM
DIS- TO
SOLVED T
(UG/L | OM MA+ OR
TERIAL T
(UG/G (1 | OTAL ' | YANIDE | CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN) | | GREASE,
TOTAL | OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG) | | |----------------------|--|---|-------------------------------------|--|---|---|--|---|---|---|--|--| | 10-2 | 5-79 | 10 | 10 | 0 | 50 | 3.0 | .00 | 1 | 2 | 0 | 0 | | | DATE | OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB, | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERLAL
(UG/KG) | PCN,
DIS-
SOLVED | | PCN, TOTAL IN BOT- TOM MA- TERLAL (UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | | | 10-25-79
10-25-79 |
46 | .0 | .00 | 6 | .0 | .00 | .0 | .00 | .00 | .0 | .0 | | | DATE | CHLOR
DANE,
TOTAL
(UG/L) | TOM MA | - DDD,
- DIS-
L SOLVE | | DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DIS- | | L TER | AL
DT- DD1
MA- DIS
MAL SOLV | ED TOTA | L TERIAL | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | 10-25-79
10-25-79 | .0 | 1.0 | - | •000 | 1.4 | .00 | | 000 | .3 | 0 | 0.00 | .02 | | DATE | DI-
AZINON
TOTAL
(UG/L | TERIA | DI-
- ELDRI
- DIS-
L SOLVE | ELDRII
D TOTAL | TERIAL | ENDO-
SULFAN
DIS- | SULFA | AN, TOM I | AN,
AL
OT-ENDRI
MA-DIS
LAL SOLV | ENDRI
ED TOTA | L TERIAL | ETHION
DIS-
SOLVED
(UG/L) | | 10-25-79
10-25-79 | .0 | 0 . | | •00 | | .000 | | 00 | .0 | | 0. 00 | .00 | | DATE | ETHION
TOTAL
(UG/L | ETHION
TOTAL
IN BOT
TOM MA | HEPTA - CHLOR - DIS- L SOLVE | , HEPTA-
CHLOR
D TOTAL | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL | HEPTA
CHLOR
EPOXID
DIS- | HEPTE CHIC | HEP
CHLC
CA- EPOX
OR TOT.
IDE BOT | TA-
DR
IDE
IN LINDA
IOM DIS-
IL. SOLVI | ANE
- LINDA
ED TOTA | LINDANE
TOTAL
IN BOT-
NE TOM MA-
NL TERIAL | MALA-
THION
DIS-
SOLVED
(UG/L) | | 10-25-79
10-25-79 | .0 | | | | 0 .0 | | | .00 | .0 | .00 | .00 .0 | .00 | | DATE | MALA-
THION,
TOTAL
(UG/L) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHLOR,
DIS- | METH- | CHLOR, | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
TOTAL
(UG/L) | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) | METHYL
TRI- | METHYL TRI - THION, TOTAL | BOTTOM DI
MATL. SOI | REX,
IS-
LVED
G/L) | | 10-25-79
10-25-79 | .00 | | | .00 | .0 | .00 | .00 | .0 | .00 | .00 | •0
 | .00 | TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY 292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA--CONTINUED NATIVE SAMPLE | DATE | MIREX,
TOTAI
(UG/L) | L TERIAL | DIS- | PARA-
THION,
TOTAL
(UG/L) | TERIAI | PER-
THANE,
DIS-
L SOLVED |
PER-
THANE
TOTAL
(UG/L | MATERII | | APHENE
D TOTAL | , TOM MA | TRI-
T- THION,
A- DIS-
AL SOLVED | |----------------------|---|---|-------------------------------------|--|--|---|--|---|--|--|---|---| | 10-25-79
10-25-79 | .00 | .0 | .00 | .00 | .0 | .00 | .00 | .00 | .00
.00 | .0 | .00 | | | DATE | TOTAL
TRI -
THION
(UG/L) | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | | 10-25-79
10-25-79 | .00 | .0 | .03 | .05
 | .00 | .00 | .00 | .01 | .00 | .00 | 10.3 | .000 | | | | | | | | ELUTRIATI | SAMPLE | | | | | | | | TIME | SETTLE-
ABLE
MATTER
(ML/L/ | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L | PHOS-
PHORUS
DIS-
SOLVE
(MG/I | DIS-
DIS-
D SOLVED | BERYL
C LIUM,
DIS-
SOLVED
(UG/L | CADMIU
DIS- | DIS- | , COPPER,
DIS- | | DATE | | HR) | (MG/L) | AS N) | AS N) | AS N) | AS P) | AS AS) | AS BE) | AS CD) | AS CR | AS CU) | | 10-25-79
DATE | 0930 LEAD, DIS- SOLVED (UG/L AS PB) | 500 MANGA- NESE, DIS- SOLVEI (UG/L AS MN) | MERCURY
DIS-
SOLVED
(UG/L | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | .50
SELE-
, NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | 3 PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHLOR-DANE, DIS-, SOLVED (UG/I.) | | 10-25-79 | 0 | 1200 | 0.0 | 13 | 0 | 10 | .00 | 3 | .1 | .0 | .000 | .0 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DI-
ZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN :
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 10-25-79 | .000 | .000 | .000 | .02 | .000 | .000 | .000 | .00 | .000 | .000 | .000 | .00 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METHYL PARA- THION, DIS- SOLVED (UG/L) | DIS- | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | DIS- | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 10-25-79 | •00 | .00 | .00 | •00 | .00 | .00 | .0 | .00 | .01 | .00 | .00 | .00 | #### TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY #### 295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA | DATE | TIME | SPE-
CIF
CON
DUC
ANC
E (UMH | IC
-
I'-
E P | INU
H COE | AT- TU
M- BI
ALT IT | D- MATT
Y (ML/L, | E ICA
ER (HI | ND, TOTA
M- IN
L BOTTO
GH MA-
L) TERIA | AL HARI
OM NESS
- (MG/
AL AS | S NONCA
/L BONA/
(MG) | S, CALCITAR- DIS-
TE SOLV.
/L (MG/ | DIS-
ED SOLVED
L (MG/L | |---------|---|---|---|--|--|---|--|---|--|---|---|---| | 7- 8-81 | 0945 | 18 | 5 6. | 9 6 | 0 8 | 0 <1. | 0 | 41 2000 | 00 3 | 34 (| 0 7. | 9 3.5 | | DATE | SODIUM
DIS-
SOLVEI
(MG/I
AS NA | DI
SOL
L (MG | UM, LINI
S- FIE
VED (MG
/L AS | TY SULE
LD DIS
L/L SOI
(MG | - DIS
WED SOL
:/L (MG | E, AT 1
- DEG.
VED SUS
/L PEND | DUE NON 05 VOL C, TIL - SUS ED PEND | - SOLI
A- VOL
E, TIL
- SUS
ED PEND | A- GEI
E, NITR
- TOTA
ED (MG, | N, AMMO
ITE DI
AL SOL
/L (MG | N, GEN,N
NIA TOTA
S- IN BO
VED MAT
/L (MG/K | H4
L
T.
S.
G | | 7- 8-81 | 22 | 2 | •5 | 29 | 2.0 | 30 | 79 | 53 | 26 .0: | 3 .2 | 9 20 | | | DATE | NITE
GEN
ORGAN
DIS
SOLV
(MG,
AS 1 | N, GEN
NIC MON
S- ORG
VED TO
/L (M | ,AM- G
IA + M
ANIC C
TAL
G/L | EN,AM- G
ONIA + H
RGANIC T
DIS. E
(MG/L | OT IN P
OT MAT
(MG/KG | PHOS-PHORUS,
TOTAL
(MG/L | SOLVED
(MG/L | RSENIC
TOTAL
(UG/L | PENDED
TOTAL
(UG/L | RSENIC I
DIS- T
SOLVED
(UG/L | RSENIC
TOTAL
N BOT-
OM MA-
TERIAL
(UG/G
AS AS) | | | 7- 8-81 | 1.: | 2 1 | .6 | 1.5 | 531 | .24 | .13 | 2 | 0 | 2 | 0 | | | | DATE | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS- | RECOV. | CADMIUM
TOTAL
RECOV- | CADMIUM
DIS-
SOLVED
(UG/L | TOM MA- | MIUM, TOTAL RECOV- ERABLE (UG/L | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | | 7- | 8-81 | 0 | <1 | 1 | 0 | <1 | .08 | 20 | 20 | 0 | 0 | 0 | | ם |)
DATE | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | | | 7- | 8-81 | 3 | 4 | 5 | 240 | 0 | 1 | 10 | 110 | 60 | 5 0 | | | D | | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | | | 7- | 8-81 | 230 | .2 | .3 | .04 | 4 | 1 | 3 | 10 | 0 | 0 | | | Ē | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOLS
(UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | | 7- | 8-81 | 0 | 0 | 20 | 14 | 2.1 | .00 | 0 | 0 | 0 | 0 | | ### TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY ### 295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA--CONTINUED | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|--|---|--
--|---|---|--|--|--|---|--|--| | 7- 8-81
7- 8-81 |
39 | <.1 | <.1
 | <1
 | <0.1 | <.1 | <1
 | <.001 | <.001 | <0.1 | <0.1 | <.1
 | | DATE | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7- 8-81
7- 8-81 | 1.0 | <.001 | <.001 | 0.7 | <.001 | <.001 | <0.1
 | <.001 | <.001 | <0.1
 | .07 | | | DATE | DI-
AZINON,
TOTAL | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
TOTAL | TOM MA-
TERIAL | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | | TOM MA-
TERIAL | ETHION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.01 | <.1
 |
<.001 | •004
 | •5
 | <.001 | <.001 | <0.1
 |
<.001 | <.001 | <0.1 |
<.01 | | | | ETHION, | | | HEPTA-
CHLOR, | HEPTA- | | HEPTA-
CHLOR | | | LINDANE | | | DATE | ETHION,
TOTAL
(UG/L) | TOTAL
IN BOT- | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | | CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDI
TOTAL
(UG/L) | MATL. | | LINDANE
TOTAL
(UG/L) | TERIAL | MALA-
THION
DIS-
SOLVED
(UG/L) | | DATE
7- 8-81
7- 8-81 | TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR,
DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | EPOXIDE
DIS-
SOLVED
(UG/L) | CHLOR
EPOXIDI
TOTAL
(UG/L) | TOT. IN E BOTTOM MATL. (UG/KG) | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION
DIS-
SOLVED
(UG/L) | | 7- 8-81 | TOTAL
(UG/L) | TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM | CHLOR,
DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | EPOXIDE DIS-SOLVED (UG/L) 1 <.00 METHYL PARA-THION, | CHLOR EPOXIDI TOTAL (UG/L) <-00 | TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL. | LINDANE
DIS-
SOLVED
(UG/L) | LINDANE
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION DIS- SOLVED (UG/L) | | 7- 8-81
7- 8-81 | TOTAL (UG/L) <.01 MALA-THION, TOTAL | TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 | CHLOR, DIS- SOLVED (UG/L) <.000 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | CHIOR, TOTAL (UG/L) <.00 METH- CXY- CHIOR, TOTAL | IN BOTTOM MATL. (UG/KG) 1 <0. METHOXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | EPOXIDE DIS- SOLVED (UG/L) 1 <.00 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDI TOTAL (UG/L) <.00 METHYI PARA-THION, TOTAL (UG/L) .01 | TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL. | LINDANE DIS- SOLVED (UG/L) 1 <.00 METHYL TRI- THION, DIS- SOLVED (UG/L) | LINDANE TOTAL (UG/L) - <.0 1 METHYL TRI- THION, TOTAL | IN BOT- TOM MA- TERIAL (UG/KG) O1 < METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) | THION DIS-SOLVED (UG/L) MIREX, DIS-SOLVED (UG/L) | | 7- 8-81
7- 8-81
DATE
7- 8-81 | MALA-THION, TOTAL (UG/L) | TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 | CHLOR, DIS-SOLVED (UG/L) METH-OXY-CHLOR, DIS-SOLVED (UG/L) | CHLOR, TOTAL (UG/L) <.00 L CHLOR, TOTAL (UG/L) <.01 | IN BOTTOM MATL. (UG/KG) 1 <0. METHOXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG) <0. | EPOXIDE DIS- SOLVED (UG/L) 1 <.00 METHYL PARA- THION, DIS- SOLVED (UG/L) 1 | CHLOR EPOXIDI TOTAL (UG/L) <.00 METHYI PARA-THION, TOTAL (UG/L) .01 | TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) <0.1 PER- THANE | LINDANE DIS- SOLVED (UG/L) 1 - <.00 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01 | LINDANE TOTAL (UG/L) - <.0 METHYL TRI- THION, TOTAL (UG/L) <.01 | IN BOTTOM MATERIAL (UG/KG) O1 < | THION DIS- SOLVED (UG/L) 1 <.01 MIREX, DIS- SOLVED (UG/L) 1 | ## TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA--CONTINUED #### NATIVE SAMPLE | DATE | TOTAL
TRI-
THION
(UG/L) | -AM MOT | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DI
TOTAL
(UG/L) | , .
S | 4,5-T
DIS-
OLVED
UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | | -
-
O
OM | |------------|----------------------------------|--------------|------------------------------------|---------------------------|------------------------------------|----------------------------|----------|---------------------------------|----------------------------|-------------------------------------|----------------------------|---|-------|-------------------| | 7- 8-81 | <.01 | <.1 | | .14 | | <.01 | | | .01 | | <.01 | 3.72 | .0 | 00 | | 7- 8-81 | | | .28 | | <.01 | | | .01 | | <.01 | | | - | _ | | DATE T | IME | | | | | | BOTTO | м мате | RIAL PART | ICLE SIZE | 2 | | | | | JUL , 1981 | | AMETER (MM) | 2.00 | 1.00 | 0.50 | | .125 | 0.06 | | | 0.008 | 0.004 | 0.002 | 0.001 | | 08 0 | 945 % FI | NER BY WEIGH | т | | | 99.9 | 94.5 | 83.0 | 62.0 | 41.5 | 33.0 | 25.0 | 21.5 | 19.5 | #### ELUTRIATE SAMPLE | | | | OXYGEN | NITRO- | NITRO- | NITRO- | | | BERYL- | • | | | |---------|--------|---------|---------|---------|---------|----------|---------|---------|---------|----------|---------|---------| | | | | DEMAND | GEN, | GEN, | GEN, AM- | PHOS- | | LIUM, | | CHRO- | | | | | SETTLE- | CHEM- | AMMONIA | ORGANIC | MONIA + | PHORUS, | ARSENIC | | CADMIUM | | COPPER, | | | | ABLE | ICAL | DIS- | DIS- | ORGANIC | DIS- | DIS- | FM BOT- | | DIS- | DIS- | | | | MATTER | HIGH | SOLVED | SOLVED | DIS. | SOLVED | SOLVED | | - SOLVED | SOLVED | SOLVED | | | | (ML/L/ | LEVEL | (MG/L | (MG/L | (MG/L | (MG/L | (UĢ/L | TERIAL | (UG/L | (UG/L | (UG/L | | DATE | TIME | HR) | (MG/L) | as n) | AS N) | AS N) | AS P) | AS AS) | (UG/G) | AS CD) | AS CR) | AS CU) | | 7- 8-81 | 0945 | 440 | 130 | .94 | 1.9 | ~- | •09 | 2 | 0 | 1 | 0 | 10 | | | | MANGA- | | | SELE- | | | | | | | | | | LEAD, | NESE, | MERCURY | NICKEL, | NIUM, | | CYANIDE | | | | | CHLOR- | | | DIS- | PCB, | • | ALDRIN | DANE, | | | SOLVED | DIS- | DIS- | DIS-, | DIS-, | | | (UG/L | (UG/L | (UG/L | (UG/L | (UG/L | (UG/L | (MG/L | PHENOLS | SOLVED | SOLVED | | SOLVED | | DATE | AS PB) | AS MN) | AS HG) | AS NI) | AS SE) | AS ZN) | AS CN) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | | 7- 8-81 | 4 | 60 | .3 | 7 | 0 | 20 | .00 | 0 | <.1 | <.1 | <.001 | <.1 | | | | | | | | | | | | HEPTA- | | | | | | | | DI- | DI- | ENDO- | | | HEPTA- | CHLOR | | mala- | | | DDD, | DDE, | DDT, | AZINON, | ELDRIN | SULFAN, | ENDRIN, | ETHION, | CHLOR, | EPOXIDE | LINDANF | THION, | | | DIS- | | SOLVED | | DATE | (UG/L) | 7- 8-81 | <.001 | <.001 | <.001 | .03 | <.001 | <.001 | <.001 | <.01 | <.001 | <.001 | <.001 | <.01 | | | METH- | METHYL | METHYL | | | | • | | | | | | | | OXY- | PARA- | TRI- | | PARA- | PER- | TOX- | TRI- | | | | | | | CHLOR, | THION, | THION, | MIREX, | THION, | THANE | APHENE, | THION | 2,4-D, | 2, 4-DP | 2,4,5-T | SILVEX, | | | DIS- | | SOLVED | | DATE | (UG/L) | 7- 8-81 | <.01 | <.01 | <.01 | <.01 | <.01 | <.01 | <.1 | <.01 | .26 | <.01 | .01 | <.01 | ### TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY #### 295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) |
---------|---|---|--|---|--|---|--|---|--|---|---|--| | 7- 8-81 | 1040 | 185 | 6.8 | 70 | 80 | <1.0 | 40 | 28000 | 31 | 10 | 6.4 | 3.6 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | | | 7- 8-81 | 22 | 2.3 | 21 | 9.8 | 35 | 120 | 88 | 32 | .01 | .23 | 19 | | | DATE | NITRO-
GEN,
ORGANIC
DIS-
SOLVEI
(MG/L
AS N) | GEN,AM-
C MONIA +
ORGANIC | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVEI
(MG/L
AS P) | ARSENIC | TOTAL
(UG/L | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | TOM MA- | | | | 7- 8-81 | | 1.5 | 1.4 | 638 | .13 | .07 | 2 | 0 | 2 | 0 | | | | | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL- L
LIUM, R
DIS- FM
SOLVED TO
(UG/L TE | ECOV. TO
BOT- RI
M MA- EI
RIAL (U | ECOV- I
RABLE SO
UG/L (U | MIUM FM
DIS- TO
DLVED T
JG/L | RECOV. M
1 BOT- T
M MA- F
TERIAL E
(UG/G (| IUM, M
OTAL
ECOV- F
ERABLE F
UG/L (| SUS- M
PENDED D
RECOV. S
(UG/L (| HRO- M
IUM, R
IS- FM
OLVED TO
UG/L T | TUM, M
ECOV. H
BOT- VA
M MA-
ERIAL (| EXA- T
LENT, R
DIS. E
UG/L (| PPER,
OTAL
ECOV-
RABLE
UG/L
S CU) | | 7- 8-81 | 0 | <1 | 0 | 0 | <1 | .05 | 10 | 0 | 10 | 0 | 0 | 1 | | DATE | COPPER,
DIS-
SOLVEI
(UG/L
AS CU) | TOM MA-
TERIAL
(UG/G | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | | | 7- 8-81 | | 5 | 180 | 0 | 0 | 0 | 10 | 80 | 60 | 20 | 300 | | | DATE | MERCURY
TOTAL
RECOV-
ERABLI
(UG/L
AS HG) | MERCURY DIS- SOLVED (UG/L | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | | | 7- 8-81 | | .3 | .03 | 3 | 2 | 1 | 10 | 0 | 0 | 0 | 0 | | | | ,
1 | ZINC, S
IOTAL PE
RECOV- RE
ERABLE EF
(UG/L (U | COV- D'
ABLE SO
IG/L (U | REX
NC, FM H
IS- TOM
IVED TEX
G/L (U | MA- OR
RIAL TO
G/G (1 | OTAL TO
MG/L (N | TO
IN
ANIDE TOM
TAL TEI
AG/L (U | • | GRE
TC
RE
CE
NOLS ME | EASF, GRE
DTAL TOT
ECOV. BOT
RAVI- GE
ETRIC ME | AND EASE, IN MAT RAVI- ETRIC E/KG) | | TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|--|--|--|--|---|--|--|--|---|--|---|--| | 7- 8-81
7- 8-81 |
35 | <.1 | <.1
 | <1
 | <0.1 | <.1
 | <1
 |
<.001 | <.001
 | <0.2
 |
<.1 | <.1
 | | DATE | CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7- 8-81
7- 8-81 | <1.0 |
<.001 | <.001 | <0.1 | <.001 | <.001 | <0.1
 | <.001 | <.001
 | <0.1
 | .01 | | | DATE | DI~ | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | IOM MA-
TERIAL | • | ENDO- | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS- 1
SOLVED
(UG/L) | ENDRIN, ' | TOM MA-
TERIAL S | ETHION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.01 | <.1 | <.001 | .010 | .7
 |
<.001 | <.001 | <0.1 |
<.001 | <.001 | <0.1 | <.01 | | | ETHION, | ETHION,
TOTAL
IN BOT- | HEPTA-
CHLOR, | нерта- | HEPTA-
CHLOR,
TOTAL
IN BOT- | HEPTA-
CHLOR
EPOXIDE | HEPTA-
CHLOR | HEPTA-
CHLOR
EPOXIDE
TOT. IN | LINDANE | LINDANE | LINDANE
TOTAL
IN BOT- | MALA-
THION | | DATE | TOTAL
(UG/L) | TOM MA-
TERIAL
(UG/KG) | DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL
(UG/L) | TOM MA-
TERIAL
(UG/KG) | | EPOXIDE
TOTAL
(UG/L) | MATL. | DIS-
SOLVED
(UG/L) | TOTAL
(UG/L) | TOM MA-
TERIAL
(UG/KG) | DIS-
SOLVED
(UG/L) | | DATE
7- 8-81
7- 8-81 | | TERIAL | SOLVED | TOTAL | TERIAL | SOLVED | EPOXIDE
TOTAL | MATL.
(UG/KG) | SOLVED | TOTAL | TERIAL
(UG/KG) | SOLVED | | 7- 8-81 | (UG/L) | TERIAL (UG/KG) <0.1 | SOLVED
(UG/L)

<.001
METH-
OXY-
CHLOR,
DIS- | TOTAL
(UG/L) | TERIAL
(UG/KG)
<0.1 | SOLVED (UG/L) <.001 METHYL PARA- THION, | EPOXIDE
TOTAL
(UG/L)
<.001 | MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL. | SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED | TOTAL,
(UG/L)
<.001 | TERIAL
(UG/KG)
<.1 | SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | (UG/L) <.01 MALA- THION, TOTAL | TERIAL (UG/KG) <0.1 | SOLVED
(UG/L)

<.001
METH-
OXY-
CHLOR,
DIS-
SOLVED | TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL | TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. | SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED | EPOXIDE TOTAL (UG/L) <.001 METHYI PARA- THION, | MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL. | SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED | TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL | TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOTTOM MATL. | SOLVED (UG/L)01 MIREX, DIS- SOLVED | | 7- 8-81
7- 8-81
DATE
7- 8-81 | (UG/L) <.01 MALA- THION, TOTAL (UG/L) | TERIAL (UG/KG) <0.1 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 | SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | METH-OXY-CHIOR, | TERIAL
(UG/KG)
<0.1

METH-
OXY-
CHIOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L) | METHYI PARA-THION, TOTAL (UG/L) | MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL. (UG/KG) <0.1 | SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01 | TOTAL (UG/L) <.001 METHYL TRI-THION, TOTAL (UG/L) <.01 | TERIAL (UG/KG) <-1 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) <0.1 | SOLVED (UG/L)01 MIREX, DIS-SOLVED (UG/L) | # TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA--CONTINUED NATIVE SAMPLE | DATE
7- 8-81
7- 8-81 | TOTAL TRI- THION (UG/L) <.01 | | 2,4-D, DIS- | 2,4-D
TOTAL | SOLVED | 2, 4-E | SOLV
(UG/ | 2,4,5
ED TOTA
'L)
(UG/ | L SOLVEI
L) (UG/I | SILVE
TOTAL
(UG/1 | L FLUOF
L) (UG/ | O- PHYTO C- PLANK TON TO CHROM ROM FLUOR /L) (UG/ | -
:-
:O
OM | |----------------------------|--|--|--|---|---|--|--|------------------------------|---|--|---|---|---------------------| | T ETAG | IME | | | | | | BOTTOM N | MATERIAL P | ARTICLE S | ZE | | | | | JUL , 1981
08 1 | | AMETER (M
NER BY WE | • | .00 1.0 | 0 0.50 | 0.25
 | | 0.062 0.
0.5 43. | 031 0.03
5 33.0 | 16 0.00
28.0 | 8 0.004
24.5 | 0.002
22.5 | 0.001
21.0 | | | | | | | 1 | ELUTRIATE | SAMPLE | | | | | | | | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIO
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
DIS-
SOLVEI
(MG/L
AS P) | DIS- | BERYL
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | , | | 7- 8-81 | 1040 | 370 | 94 | 1.0 | 1.7 | 2.7 | .05 | 1 | 0 | 1 | 10 | 10 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS (UG/L) | PCB,
DIS-
SOLVED
(UG/L) | DIS-
SOLVED | ALDRIN
DIS-,
SOLVED S | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | | 7- 8-81 | 3 | 10 | .0 | 3 | 0 | 30 | •00 | 0 | <.1 | <.1 | <.001 | <.1 | | SOLVED (UG/L) <.01 SOLVED SOLVED (UG/L) <.01 (UG/L) <.01 DATE 7- 8-81 SOLVED (UG/L) <.01 SOLVED (UG/L) <.01 SOLVED (UG/L) <.01 SOLVED (UG/L) <.01 SOLVED (UG/L) <.1 SOLVED (UG/L) .07 SOLVED (UG/L) <.01 SOLVED (UG/L) .01 SOLVED (UG/L) <.01 # TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |---------|---|--|---|--|---|---|---|--|---|--|---|--| | 7- 8-81 | 1135 | 212 | 6.8 | 60 | 50 | <1.0 | 31 | 54000 | 35 | 14 | 7.5 | 3.9 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | | | 7- 8-81 | 26 | 2.5 | 21 | 8.8 | 42 | 59 | 34 | 2 5 | .75 | .01 | | | | DATE | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITROGEN, AMMONIA ORGANIO DIS. (MG/L AS N) | - GEN, NH | 4
NITRO-
GEN,
I TOTAL | PHORUS, | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | | | | 7- 8-81 | .23 | 46 | 1.2 | 1.4 | 1.4 | 1050 | 2.2 | .15 | .08 | 2 | | | | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-MIUM,
SUS-PENDED
RECOV.
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | | 7- 8-81 | 1 | 0 | 0 | 1 | 0 | 0 | <1 | .09 | 10 | 0 | 10 | 0 | | | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L | COPPER,
DIS-
SOLVED
(UG/L | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | IRON,
DIS-
SOLVED
(UG/L | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L | LEAD,
DIS-
SOLVED
(UG/L | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L | MANGA-
NESE,
DIS-
SOLVED
(UG/L | | | DATE | AS CR) | AS CU) | AS CU) | AS CU) | AS FE) | AS PB) | AS PB) | AS PB) | AS MIN) | AS MIN) | AS MIN) | | | | N
R
FM
TO
T | ANGA-
ESE, MEI
ECOV. TO
BOT- RI
M MA- EI
ERIAL (U
UG/G) AS | ECOV- I
RABLE SO
JG/L (U | RECURY FM DIS- TON DIVED TE | BOT- TO MA- RETAL EXECUTE (INC.) | NICKEL, SOTAL P. ECOV- R. RABLE E. UG/L (1 | ECOV- DERABLE SOUG/L (US NI) AS | RECKEL, FM IS- TOW OLVED TE UG/L (U | IMA~ NI
TRIAL TO
TG/G (U | NI
LE- S
LUM, PE
TAL TO
G/L (U | 10 LE- UM, US- NDED TAL G/L SE) 0 | | | | n
S
(| ELE- NI
IUM, TO
DIS- IN
OLVED TO
UG/L TI | BOT- I
MMA- SC
ERIAL (I | RI
INC, FM
DIS- TO
DLVED TI
UG/L (U | MMA-OR
ERIAL T
NG/G (| OTAL T
MG/L (| TO IN ANIDE TO OTAL TE MG/L (| • | GRE
TO
RE
CF
ENOLS ME | ASE, GREVIAL TOI
COV. BOY
CAVI- GR
TIRIC ME | AND ASE, IN MAT WAVI- MIRIC KG) | | # TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, IA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |--------------------|---|--|---|--|--|---|--|--|---------------------------------------|---|---|------------------------------------| | 7- 8-81
7- 8-81 |
36 |
<.1 | <.1 | <1
 | <0.1 | <.1 | <1
 | <.001 | <.001 | <0.1 | <0.1 | <.1
 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7- 8-81
7- 8-81 | 3 |
<.001 | <.001 | 2.0 | <.001 | <.001 | 0.3 | <.001 | <.001
 | <0.1 | .04 | | | DATE | DI-
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA-
TERIAL | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) |
ENDRIN,
DIS-
SOLVED
(UG/L) | FNDRIN,
TOTAL
(UG/L) | TOM MA- | ETHION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.01 | <.1 | <.001 | .007
 | .2 | <.001 | <.001 | <0.1 | <.001 | <.001 | <0.1 |
<.01 | | DATE | ETHION,
TOTAL
(UG/L) | TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | TOM MA-
TERIAL | DIS- | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | TOT. IN
BOTTON
MATL | DE
N LINDANE
M DIS-
. SOLVED | LINDANE
TOTAL | TERIAI | MALA-
THION
DIS-
SOLVED | | 7- 8-81
7- 8-81 | <.0 | l <0.1 | <.001 | <.001 | <0.1 | <.001 | <.001 | (0.1
 |
<.001 | <.001 | <.1 | .02 | | DATE | MALA-
THION
TOTAL
(UG/L) | TERIAL | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METH-
OXY-
CHLOR,
TOTAL
(UG/L) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | | METHYI
PARA-
THION, | TOT. II
BOTTOM
MATL | THION, DIS- SOLVED | METHYL
TRI -
THION,
TOTAL
(UG/L) | METHYL
TRI-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | .03 | 3 <0. | 1
<.01 | <.01 | <0.
 | 1
<.01 | <.01 | <0.1 | <.01 | <.01 | <0.1 |
<.01 | | | | MIREX, | PARA- | | PARA-
THION,
TOTAL | PER- | | PER-
THANE | TOX- | | TOXA-
PHENE,
TOTAL | TRI- | | DATE | MIREX,
TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | THION,
DIS-
SOLVED
(UG/L) | PARA-
THION,
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | THANE,
DIS-
SOLVED
(UG/L) | PER-
THANE
TOTAL
(UG/L) | IN
BOTTOM
MATERIL
(UG/KG) | APHENE,
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
TOTAL
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION,
DIS-
SOLVED
(UG/L) | ## TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, IA--CONTINUED NATIVE SAMPLE | DATE
7- 8-81
7- 8-81 | TOTAL TRI- THION (UG/L) <.01 | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L)
.02 | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-D
TOTAL
(UG/L
<.0 | SOLA
) (UG/
1 - | S- 2,4,5
/ED TOTA
/L) (UG/ | L SOLVE
L) (UG/
01 - | S- SILVI
ID TOTI
'L) (UG, | AL FLUOR
/L) (UG/
.01 4. | - PHYTC - PLANN TON O CHROM OM FLUOR L) (UG/ |)-
(-
10
XOM | |----------------------------|--|---|--|--|---|---|--|--|--|--|--------------------------------|--|-----------------------| | DATE TIME | E | | | | | В | OTTOM MAT | TERIAL PAR | TICLE SIZ | že | | | | | JUL , 1981
08 1139 | | ETER (MM)
R BY WEIGH | 2.00
TT | 1.00 | | 0.25 0.
9.9 96. | 125 0.0
0 88.5 | | 0.016
44.0 | 0.008
33.5 | 0.004
26.5 | 0.002
23.0 | 0.001
22.0 | | | | | | | EL | JIRIATE S | AMPLE | | | | | | | | DATE | М
(М | DEM
TTLE- CH
ABLE IC
VATTER HI
L/L/ LEV | AND C
EM- AMM
AL I
GH SC
EL (M | EEN, (
NONIA ORO
DIS- I
DLVED SO
NG/L (1 | GEN, GE
GANIC MO
DIS- OF
DLVED I
MG/L | NITRO-
EN, AM-
DNIA +
RGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | DIS- | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | | | 7- 8-81 | 1135 | 375 | .00 | 1.9 | 1.0 | 2.9 | .09 | 2 | 0 | 1 | 10 | 5 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | (MG/L
AS CN) | PHENPLS
(UG/L) | (UG/L) | PCN,
DIS-
SOLVED
(UG/L) | (UG/L) | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | | 7- 8-81 | 3 | 530 | .0 | 2 | 0 | 40 | .00 | 0 | <.1 | <.1
MEDITA_ | <.001 | <.1 | | | Dame | DDD,
DIS-
SOLVED | DDE,
DIS-
SOLVED | DDT, A
DIS-
SOLVED | DI-
AZINON,
DIS-
SOLVED | DI-
ELDRIN
DIS-
SOLVED | ENDO-
SULFAN,
DIS-
SOLVED | ENDRIN,
DIS-
SOLVED | ETHION,
DIS-
SOLVED | HEPTA-
CHLOR,
DIS-
SOLVED | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED | DIS- | MALA-
THION,
DIS-
SOLVED | | DATE 7- 8-81 DATE 7- 8-81 (UG/L) <.001 METH- OXY- CHLOR, (UG/L) <.01 (UG/L) <.001 METHYL PARA~ THION, (UG/L) <.01 DIS- DIS-SOLVED SOLVED (UG/L) <.001 METHYL TRI- THION, DIS-SOLVED (UG/L) <.01 (UG/L) .06 MIREX, DIS-SOLVED (UG/L) <.01 (UG/L) <.001 PARA- THION, DIS- SOLVED (UG/L) <.01 (UG/L) <.001 PER- THANE DIS- SOLVED (UG/L) <.01 (UG/L) <.001 TOX- DIS- SOLVED (UG/L) <.1 APHENE, (UG/L) <.01 TRI- THION DIS- SOLVED (UG/L) <.01 (UG/L) <.001 2,4-D, DIS- SOLVED (UG/L) .15 (UG/L) <.001 2, 4-DP DIS-SOLVED (UG/L) <.01 (UG/L) .08 SILVEX, DIS-SOLVED (UG/L) <.01 (UG/L) <.001 2,4,5-T DIS- SOLVED (UG/L) <.01 ### TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY #### 295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA | DATE | TIME | SPE-
CIFI
CON-
DUCT
ANCE
(UMHC | C
-
PF |)
I
H C | OLOR
PLAT-
NUM-
OBALT
NITS) | TUR-
BID-
ITY
(NTU) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | IC | AND,
EM-
AL
IGH
EL) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD
NESS
NONCA
BONAT
(MG/
CACO | , CAL
R- DI
E SC
L (M | CIUM
:S-
DLVED
IG/L
S CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |---------|--|--|--|---|---|--|---|---|--|---|--|---|--|--|--| | 7- 8-81 | 1230 | 19 | 0 7. | .2 | 50 | 30 | <1.0 | 39 | 9 | 5200 | 40 | 0 | | 9.9 | 3.6 | | DATE | SODI
DIS
SOLV
(MG
AS | -
ED
/L | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFA
DIS-
SOLVI
(MG/I
AS SO | TE RI
DI
ED SO
L (M | LO- RE DE, AT S- DE LVED S G/L PE | LIDS,
SIDUE
105
G. C,
US-
NDED
MG/L) | SOLII
NON-
VOLA
TILA
SUS-
PENDA
(MG/ | SOLI
A- VOI
E, TII
- SUS
ED PENI | A- (
E, NIT
G- T(
)ED (M | GEN,
TRATE N
OTAL
MG/L | NITRO-
GEN,
ITRITE
TOTAL
(MG/L
AS N) | | | | 7- 8-81 | | 21 | 2.5 | 46 | 6. | 4 | 26 | 32 | | 15 | 17 | .30 | .02 | | | | DATE | NIT
GE
AMMO
DI
SOL
(MG
AS | N, G
NIA
S- I
VED
/L (| NITRO-
EN, NH4
TOTAL
N BOT.
MAT.
MG/KG
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | ORGAN: | M- GE
+ MO
IC OR
L D
L (i | N,AM- G
NIA + +
GANIC T
IS. B
MG/L | NITRO-
EN, NH4
ORG.
OT IN
OT MAT
(MG/KG
AS N) | GI
TO | EN, PHO
FAL TO
G/L (M | HOS- PH
DRUS,
DTAL S
MG/L (| PHOS-
HORUS,
DIS-
BOLVED
(MG/L
AS P) | ARSENIC
TOTAL
(UG/L
AS AS) | | | | 7- 8-81 | | 23 | 10 | .77 | 1.: | | 1.0 | 128 | | , . <u>.</u>
L.6 | .34 | .19 | 4 | | | | 1 | RSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSE
DI | TO
INIC IN
S- TON
IVED TH | DTAL
BOT-
1 MA-
ERIAL
JG/G | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL
LIUM,
DIS-
SOLVE
(UG/L
AS BE | RECO
FM BO
D TOM M
TERIA | , CAI
V. TC
T- RI
A- EI
L (U | OMIUM
OTAL
ECOV-
RABLE
UG/L
S CD) | CADMIUN
DIS-
SOLVEI
(UG/L
AS CD) | M RECOVER FM BC TOM M TERIA | OT-REC
NA-ERA
NL (UG | M,
PAL
OV-
BLE
/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | | 7- 8-81 | 1 | | 3 | 0 | 0 | <1 | 0 | | 0 | <1 | .03 | 3 | 10 | 0 | 0 | | DATE | CHR
MIU
HEX
VALE
DI
(UG
AS | M, C
A-
NT,
S.
/L | OPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPEI
RECOV
FM BOY
TOM MA
TERIA
(UG/V
AS CI | V.
I- IR
A- D
AL SO
G (U | ON, T
IS- R
LVED E
G/L (| EAD,
OTAL
ECOV-
RABLE
UG/L
S PB) | LEAL
DIS
SOLV
(UG/
AS I | O, FM E
S- TOM
/ED TEF
/L (UC | COV. NE
SOT- TO
MA- RE
RIAL EF
G/G (U | ese,
DTAL
ECOV-
RABLE
UG/L | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANG
NESE
DIS
SOLV
(UG/
AS M | ,
-
ED
L | | 7- 8-81 | | 0 | 0
| 4 | : | 2 | 560 | 0 | | 1 | 10 | 110 | 60 | 5 | 0 | | 1 | DATE | MANG
NESE
RECO
FM BO
TOM M
TERI
(UG/ | MERC
V. TO:
VI- REC
IA- ERA
AL (UC | TAL ME
COV-
ABLE S
G/L (| RCURY 1 | MERCURY
RECOV.
FM BOT-
IOM MA-
TERIAL
(UG/G
AS HG) | NICKEL
TOTAL
RECOV
ERABL
(UG/L
AS NI | PEI
- REX
E ERA
(UX | KEL,
US-
NDED
COV-
ABLE
G/L
NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAI
(UG/G
AS NI) | - SELE
- NIUM
L TOTA
(UG/ | NI S PE L TO L (U | CLE-
CUM,
CUS-
CNDED
OTAL
IG/L
S SE) | | | 7- | 8-81 | 3 | 20 | .2 | .3 | .02 | 5 | | 3 | 2 | 10 | | 0 | 0 | | | 1 | DATE | SELE
NIUM
DIS
SOLV
(UG/
AS S | - NIU
I, TOT
I- IN I
TED TOM
IL TEI | PAL Z
BOT-
MA- S
RIAL (| | ZINC,
RECOV.
FM BOT-
IOM MA-
TERIAL
(UG/G
AS ZN) | CARBON
ORGANI
TOTAL
(MG/L
AS C) | C CYAN
TO:
(MC | NIDE
FAL
G/L
CN) | CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN) | PHENOLS | METR | E, GRE
L TOI
V. BOI
I- GR
IC ME | AND ASE, IN MAT AVI- TRIC K(KG) | | | 7- | 8-81 | | 0 | 0 | 20 | 5 | 9.1 | • | .00 | 0 | 1 | | 0 | 0 | | TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | AIDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHIOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |---------------------------------------|---|--|--|--|--|---|--|---|--|--|---|--| | 7- 8-81
7- 8-81 | 41 | <.1 | <.1 | <1
 | <0.1 | <.1 | <1 | <.001 | <.001 | <0.1 | <0.1 | <.1
 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) | DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 7- 8-81
7- 8-81 | <1
 |
<.001 | <.001 | <.1 |
<.001 | <.001
 | <.1
 |
<.001 | <.001 | <0.1 | .04 | | | DATE | DI -
AZINON,
TOTAL
(UG/L) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI -
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA-
TERIAL : | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO- | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS- 1
SOLVED
(UG/L) | | TOM MA-
TERIAL | ETHION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | <.01 | <.1 | .001 | <.001 | <.1 | <.001 | <.001 | <0.1 | <.001 | <.001 | <0.1 | <.01 | | | | | | | HEPTA- | | | HEPTA- | | | | | | DATE | ETHION
TOTAL
(UG/L) | TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
TOTAL
(UG/L) | CHLOR,
TOTAL
IN BOT- | DIS- | HEPTA-
CHLOR
EPOXIDE
TOTAL
(UG/L) | CHLOR EPOXII TOT. IN BOTTON MATL | DE
N LINDANE
M DIS-
N SOLVED | LINDANE
TOTAL
(UG/L) | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | MALA-
THION
DIS- | | DATE
7- 8-81
7- 8-81 | TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR,
DIS-
SOLVED
(UG/L) | CHLOR,
TOTAL | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | CHLOR
EPOXIDE
TOTAL | CHLOR EPOXII TOT. IN BOTTOM MATL. (UG/KG) | DE N LINDANE M DIS SOLVED (UG/L) | LINDANE
TOTAL
(UG/L)
<.001 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | MALA-
THION
DIS-
SOLVED | | 7- 8-81 | TOTAL
(UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL | CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- | CHLOR,
TOTAL
(UG/L)
<.001 | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. | CHLOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION, | CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY! PARA- THION | CHLOR EPOXII TOT. IN BOTTOM MATL. (UG/KG) (UG/KG) METHYL PARA- THION TOT. II BOTTOM MATL. | DE LINDANE DIS- SOLVED (UG/L) <.001 METHYL TRI- N THION, DIS- SOLVED | LINDANE
TOTAL
(UG/L)
<.001 | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 | MALA-
THION
DIS-
SOLVED
(UG/L) | | 7- 8-81
7- 8-81 | TOTAL (UG/L) <.01 MALA- THION TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TERIAL (UG/KG) 1 (UG/KG) 1 0.1 | CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | CHLOR, TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | CHIOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY) PARA- THION TOTAL (UG/L) | CHLOR EPOXII TOT. IT BOTTON MATL. (UG/KG) METHYL PARA- THION TOT. II BOTTON MATL. (UG/KG) | METHYL, TRI- N THION, DIS- SOLVED (UG/L) | LINDANE TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOTTOM MATL. | MALA- THION DIS- SOLVED (UG/L)01 MIRFX, DIS- SOLVED | | 7- 8-81
7- 8-81
DATE
7- 8-81 | TOTAL
(UG/L)
<.0:

MALA-
THION
TOTAL
(UG/L | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TERIAL (UG/KG) 1 (UG/KG) 1 0.1 | CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | CHLOR, TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL (UG/L) | CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG) | CHIOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L) | CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY) PARA- THION TOTAL (UG/L) | CHLOR EPOXII TOT. IT BOTTON MATL (UG/KG) METHYL PARA- THION TOT. II BOTTOI MATL (UG/KG) | METHYL, TRI- N THION, M DIS- SOLVED (UG/L) | LINDANE TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL (UG/L) | TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOITOM MATL. (UG/KG) | MALA-THION DIS-SOLVED (UG/L) MIREX, DIS-SOLVED (UG/L) | # TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA--CONTINUED NATIVE SAMPLE | DATE | TOTAL
TRI-
THION
(UG/L) | TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/I.) | |--------------------|----------------------------------|---|------------------------------------|---------------------------|------------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|----------------------------|---|--| | 7- 8-81
7- 8-81 | <.01
 | <.1
 | .13 | | <.01 | | .02 | |
<.01 | | 3.60
 | .000 | DATE TIME BOTTOM MATERIAL PARTICLE SIZE JUL , 1981 DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 08... 1230 % FINER BY WEIGHT -- 99.9 99.8 96.0 79.5 34.0 17.5 14.0 12.5 11.5 11.0 11.0 #### ELUTRIATE SAMPLE | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | DIS- | FM BO | 7. CADMIUN
P- DIS-
A- SOLVED
L (UG/L | CHRO-
MIUM,
DIS-
SOLVEI
(UG/L
AS CR) | COPPER,
DIS-
DIS-
COLVED
(UG/L | |---------|---|---|--|---|---|---|--|---|--
--|---|--| | 7- 8-81 | 1230 | 900 | 43 | .57 | 1.0 | | .03 | 1 | 0 | 0 | 0 | 9 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CYANIDE
DIS-
SOLVED
(MG/L
AS CN) | PHENOLS
(UG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVED
(UG/L) | ALDRIN
DIS-,
SOLVED
(UG/L) | CHIOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 7- 8-81 | 1 | 160 | .2 | 1 | 0 | 20 | .00 | 4 | <.1 | <.1 | <.001 | <.1 | | DATE | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DDT,
DIS-
SOLVED
(UG/L) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR,
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | 7- 8-81 | <.001 | <.001 | <.001 | .05 | .001 | <.001 | <.001 | <.01 | <.001 | <.001 | <.001 | <.01 | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PER-
THANE
DIS-
SOLVED
(UG/L) | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS-
SOLVED
(UG/L) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 7- 8-81 | <.01 | <.01 | <.01 | <.01 | <.01 | <.01 | <.1 | <.01 | .14 | <.01 | .02 | .01 | TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION 293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, LA NATIVE SAMPLE | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(UNITS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-------------------|---|--|---|---|--|--|--|---|---|--|---|---| | 10-18-79 | 1024 | 41800 | 8.2 | 5 | <1.0 | 750 | 14000 | 5300 | 5100 | 290 | 1100 | 8400 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | SOLIDS,
NON-
VOLA-
TILE,
SUS-
PENDED
(MG/L) | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | | | 10-18-79 | 450 | 140 | 0 | 115 | 2400 | 16000 | 68 | 32 | 36 | .00 | .01 | | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L,
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
DIS-
SOLVED
(MG/L
AS P) | | | 10-18-79 | .08 | .08 | 20 | .32 | .27 | .40 | .35 | 2600 | .40 | .03 | .02 | | | DATE | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
SUS-
PENDED
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
SUS-
PENDED
RECOV.
(UG/L
AS CR) | | 10-18 - 79 | 2 | 1 | 1 | 0 | 10 | 10 | 0 | 0 | 1 | .02 | 30 | 20 | | DATE | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS PB) | LFAD,
DIS-
SOLVED
(UG/L
AS PB) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | | 10-18-79 | 10 | 4 | 0 | 1 | 1 | 0 | 3 | 140 | 24 | 24 | 0 | 0 | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
SUS-
PENDED
RECOV.
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | SEIE-
NIUM,
TOTAL
(UG/L
AS SE) | SFLE-
NIUM,
SUS-
PENDED
TOTAL
(UG/L
AS SE) | | 10-18-79 | 40 | 10 | 30 | 190 | .0 | .1 | .01 | 2 | 4 | 0 | 0 | 0 | | DATE | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
SUS-
PENDED
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANIDE
TOTAL
(MG/L
AS CN) | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS CN) | PHENOIS (UG/L) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | | 10-18-79 | 0 | 0 | 40 | 20 | 20 | 10 | 2.5 | .00 | 0 | 2 | 0 | 0 | TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION 293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, LA--CONTINUED NATIVE SAMPLE | DATE | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | PCB,
DIS-
SOLVED
(UG/L) | PCB,
TOTAL
(UG/L) | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | PCN,
DIS-
SOLVED
(UG/L) | NAPH-
THA-
LENES,
POLY-
CHLOR.
TOTAL
(UG/L) | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALDRIN,
DIS-
SOLVED
(UG/L) | ALDRIN,
TOTAL
(UG/L) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
DANE,
DIS-
SOLVED
(UG/L) | CHLOR-
DANE,
TOTAL
(UG/L) | |-------------------------|---|---|---|--|---|---|--|--|--|---|--|------------------------------------| | 10-18-79
10-18-79 | 1200 | .0 | .00 | 3 | .0 | .00 | .0 | .000 | .000 | .0
 | .0 | .0
 | | DATE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDD,
DIS-
SOLVED
(UG/L) |
DDD,
TOTAL
(UG/L) | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDE,
DIS-
SOLVED
(UG/L) | DDE,
TOTAL
(UG/L) | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DDT,
DIS-
SOLVED
(UG/L) | DDT,
TOTAL
(UG/L) | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
AZINON,
DIS-
SOLVED
(UG/L) | | | 10-18-79
10-18-79 | .0
 | .000 | .000 | <u>.2</u> | .000 | .000 | •2
 | .000 | .000 | .0
 | .04 | | | DATE | DI- | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN
DIS-
SOLVED
(UG/L) | DI- | TOM MA- | ENDO-
SULFAN,
DIS-
SOLVED
(UG/L) | ENDO-
SULFAN,
TOTAL
(UG/L) | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN,
DIS-
SOLVED
(UG/L) | ENDRIN, ' | TOM MA- | ETHION
DIS-
SOLVED
(UG/L) | | 10-18-79
10-18-79 | •00
 | <u>.0</u> | .000 | •000
 | .0
 | .000 | .000 | .0
 | .00 | •00
~- | .0
 | .00 | | DATE | ETHION,
TOTAL
(UG/L) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL | HEPTA-
CHLOR,
DIS-
SOLVED | HEPTA-
CHLOR, | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAI | DIS- | EPOXIDE | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL. | LINDANE | LINDANE
TOTAL | | MALA-
- THION
- DIS- | | | (00/11) | | (UG/L) | (UG/L) | (UG/KG) | SOLVED
(UG/L) | TOTAL
(UG/L) | | (UG/L) | (UG/L) | TERIAI
(UG/KG) | | | 10-18-79
10-18-79 | .00 | (UG/KG) | | (UG/L) | (UG/KG) | | (UG/L) | (UG/KG) | | (UG/L) | | (UG/L) | | | •00 | (UG/KG) .0 .MALA- THION, TOTAL IN BOT- , TOM MA- TERIAL | (UG/L)00 METH- OXY- CHLOR, DIS- | (UG/L) | (UG/KG) .0 METH- OXY- CHLOR, TOT. IN | (UG/L) 00 METHYL PARA- I THION, DIS- SOLVED | .000
0 | METHYL PARA-THION, TOT. IN BOTTOM MATL. | (UG/L)00 METHYL TRI- THION, | (UG/L) | (UG/KG) | (UG/L) | | 10-18-79 |
 | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | METH-OXY-CHLOR, DIS-SOLVED (UG/L) | (UG/L) .000 0 METH- OXY- CHLOR, TOTAL | METH- OXY- CHLOR, TOT: IN BOTTON MATT (UG/KG) | (UG/L) | (UG/L) .000 0 METHYI PARA- THION, TOTAL | METHYL PARA- L THION, TOT. IN BOTTOM MATL. (UG/KG) | (UG/L) 00 METHYL, TRI- THION, DIS- SOLVED (UG/L) | (UG/L) .000 0 METHYL TRI- THION, TOTAL | (UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. | (UG/L)00 MIREX, DIS- SOLVED | | 10-18-79 DATE 10-18-79 | MALA-THION, TOTAL (UG/L) | MALA- THION, TOTAL IN BOT- TERTAL (UG/KG) | (UG/L) 00 METH- OXY- CHLOR, DIS- SOLVED (UG/L) | (UG/L) .000 0 METH- OXY- CHLOR, TOTAL (UG/L) .00 | METH- OXY- CHLOR, TOT: IN BOTTON MATT (UG/KG) | (UG/L) | (UG/L) .000 .000 .000 METHYI PARA- THION, TOTAL (UG/L) | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) D PER- THANE | (UG/L) 00 MEIHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE, | (UG/L) .000 0 METHYL TRI- THION, TOTAL (UG/L) .00 | METHYL TRI- THION, TOT. IN BOITOM MATL. (UG/KG) | MIREX, DIS- SOLVED (UG/L) | ### TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION ### 293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, IA--CONTINUED #### NATIVE SAMPLE | DATE | TOTAL I
TRI- T
THION | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 2,4-D,
DIS-
SOLVED
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2,4-DP
DIS-
SOLVED
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | SILVEX,
TOTAL
(UG/L) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | |----------------------|----------------------------|--|------------------------------------|---------------------------|------------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|----------------------------|---|---| | 10-18-79 | .00 | .0 | | 1.3 | | .00 | | .04 | | .00 | 2.29 | .000 | | 10-18-79 | | | 1.0 | | .00 | | .03 | | .00 | | | | | DATE TIME | | | | | | BOTTO | MATERIAI | PARTICLE | SIZE | | | | | СТ , 1979
18 1024 | DIAMETER (| | 2.00
99.0 | 1.00 0.
98.0 97. | | 0.125
93.0 | | | .016 0. | .008 0.0
.0 27.0 | | 2 0.001
23.5 | #### ELUTRIATE SAMPLE | DATE | TIME | SETTLE-
ABLE
MATTER
(ML/L/
HR) | OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ARSEN
DIS-
SOLVE
(UG/L
AS AS | DIS-
D SOLVED
(UG/L | CADMIT
DIS-
SOLVEI
(UG/L
AS CD) | DIS-
SOLVE
(UG/L | DIS-
D SOLVE
(UG/L | r
D | |------------------|---|---|--|---|---|--|---|---------------------------|--|--|-------------------------------------|--| | 10-18-79 | 1024 | 610 | 800 | 1.3 | .50 | 1.8 | 5 | 0 | 1 | 20 | 0 | | | DATE | LEAD,
DIS-
SOLVE
(UG/L
AS PB | (UG/I | MERCUF DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | (UG/L | DIS-
SOLVED
(MG/L | | PCB,
DIS-
SOLVED
(UG/L) | PCN,
DIS-
SOLVEI
(UG/L) | DIS-, | CHLOR-
DANE,
DIS-,
SOLVED
(UG/L) | | 10-18-79 | .0 | 540 | .1 | 0 | 0 | 20 | .00 | 4 | •0 | .0 | .000 | .0 | | DATE
10-18-79 | DDD,
DIS-
SOLVED
(UG/L) | DDE,
DIS-
SOLVED
(UG/L) | DIS- | DIS- | ELDRIN S
DIS- | ENDO-
SULFAN, E
DIS-
SOLVED
(UG/L) | ENDRIN,
DIS-
SOLVED
(UG/L) | ETHION,
DIS- | HEPTA-
CHLOR, I
DIS-
SOLVED
(UG/L) | HEPTA-
CHLOR
EPOXIDE
DIS-
SOLVED
(UG/L) | LINDANE
DIS-
SOLVED
(UG/L) | MALA-
THION,
DIS-
SOLVED
(UG/L) | | DATE | METH-
OXY-
CHLOR,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL TRI- THION, DIS- SOLVED (UG/L) | MIREX,
DIS-
SOLVED
(UG/L) | PARA-
THION,
DIS- | PER- | TOX-
APHENE,
DIS-
SOLVED
(UG/L) | TRI-
THION
DIS- | 2,4-D, :
DIS-
SOLVED : | 2, 4-DP
DIS-
SOLVED
(UG/L) | 2,4,5-T
DIS-
SOLVED
(UG/L) | SILVEX,
DIS-
SOLVED
(UG/L) | | 10-18-79 | .00 | .00 | .00 | .00 | .00 | .00 | .0 | .00 | -90 | .00 | .02 | .01 | ## HYDROLOGIC DATA--Continued Part C: Data For Proposed Ocean-Disposal Areas (Tables 13-16) TABLE 13.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET | OF | 292730089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 | (BRETON SOUND), NEAR HOPEDALE, LA | |----|---|-----------------------------------| | | OF ME | | | | 292730089070500 | | | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | 0 | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | 0. | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | |--|----------|---|----------|--|----------|---|----------| | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | н | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | HEPTA- HE CHLOR, CG TOTAL ERC IN BOT- TOT TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TERIAL (UG/KG) (UG/KG) | 0. | TOXA- PHENE, TI TOTAL IN BOT- IN TOM MA- TO TERLAL TIGG/KG) (U | 0. | | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 0 | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | ETHION, CA
TOTAL TOTAL IN BOT- IN TOM MA- TO TOM (UG/KG) (UG/KG) | 0. | E
OM
RIL
KG) | 00. | | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | .01 | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0 | ENDRIN, ETH
TOTAL TK
IN BOT- IN
TOM WA- TO
TERIAL TI
(UG/KG) (UK | 0. | PARA- THION, PER- TOTAL THAN IN BOT- IN TERIAL MATE (UG/KG) (UG/ | 0. | | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 0 | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | 0 | ENDO-
SULFAN, EN
TOTAL TY
IN BOT- IN
TOM MA- TOO
TERIAL T | 0. | MIREX, TI
TOTAL TOTAL TO IN BOT- IN TOM MA- TO TERLAL TO (UC/KG) (UC/KG) | 0. | | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | 4 | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | 0 | DI- ES ELDRIN, SUI TOTAL T IN BOY- IN TOM MA- TOM TERIAL TI (UG/KG) (U | 0. | METHYL TRI- M. THION, TG TOT. IN IN BOTTOM TO MATL. TI (UG/KG) (U | 0. | | NITRO-
GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | 1590 | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | ю | DI- I AZINON, ELI TOTAL T IN BOT- IN TOM MA- TO TERIAL T (UG/KG) (U | 0. | METHYL M PARA- THION, TI TOT. IN TO BOTTOM B MATT. I | 0, | | NITRO-
GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG | 14 | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | 0 | DDT, AZJ
TOTAL
TC
IN BOT- IN
TOM MA- TOM
TERLAL TT
(UG/KG) (U | 0. | METH- MECONY- PUCHLOR, THE TOT. IN TOO BOTTOM BY MATT. (UG/KG) (UG/KG) | 0. | | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | 25000 | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | 7 | DDE, I
TOTAL TO
IN BOT- IN
TOM MA- TOW
TERLAL TE | 0. | MALA- ME THION, ON TOTAL CF IN BOT- TOO TOOM MA- BC TERLAL IN (UC/KG) (UC | 0. | | C.O.D.
TOTAL
IN
BOTTOM
MA-
TERIAL
(MG/KG) | 2600 | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | .01 | DDD, I
TOTAL TO
IN BOT- IN
TOM MA- TOW
TERLAL TE | 0. | LINDANE TE TOTAL TO TOTAL TO TOW MA- TOW MA- TOW MG- TERLAL TERLAL TERLAL (UG/KG) (UC | 0. | | TIME | 1215 | MANGA-
NESE,
RECOV.
EM BOT-
TOM MA-
TERIAL
(UG/G) | 46 | DATE (UG | 62-0 | LIN
TO
TOW
TOW
THE | 62-0 | | DATE | 10-30-79 | DATE | 10-30-79 | 2 | 10-30-79 | a | 10-30-79 | 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 81.0 11.5 -- -- -- -- -- -- 2.00 1.00 0.50 0.25 -- -- 99.0 96.0 OCT , 1979 DIAMETER (MM) 30... 1215 % FINER BY WEIGHT TIME DATE BOTTOM MATERIAL PARTICLE SIZE 102 TABLE 14.--WATER-QUALITY DATA, SOUTHWEST PASS 285338089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS, AT MILE 21.0 (BHP), NEAR BURRWOOD, LA | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | 25 | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0.6 | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | 0. | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | |--|----------|---|----------|--|----------|--|----------| | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | 16 | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | HEPTA- HE CHLOR, CH TOTAL, EPC IN BOT- TOT IOM MA- BO TERIAL M TERIAL M | 0. | TOXA- T
PHENE, TH
TOTAL. TO
IN BOT- IN
TOM MA- TOW
TERIAL TE | 0• | | CHRO-
MIUM,
REGOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 12 | PCN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | HE ETHION, CHATCHEL TOTAL TOTAL TO NA TOM MATTERIAL TERIAL | 0. | E
OM
RIL
KG) | 00. | | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | .17 | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 21 | ENDRIN, ETH
TOTAL TO
IN BOT- IN
TOM MA- TOW
TERIAL TH
(UG/KG) (UG | 0. | PARA-
THION, PER-
TOTAL THAN
IN BOT- IN
TOM MA- BOTT
TERIAL MATE
(UG/KG) (UG/ | 0. | | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 0 | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | 0 | ENDO-
SULFAN, ENI
TOTAL TO
IN BOT- IN
TERIAL TERIAL TERIAL TE | 0. | MIREX, THE TOTAL IN BOTH IN BOTH IN TOW MA- TOW MG- TERIAL ITERIAL ITE | 0. | | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | 11 | CYANIDE
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G | 58 | DI- EP ELDRIN, SUI TOTAL IG IN BOT- IN TOM MA- TOM TERIAL IG (UG/KG) (UG | 1.0 | METHYL TRI- MI THION, IC TOT. IN IN BOTTOM TOM MATL. TT (UC/KG) (UC | 0. | | NITRO-GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N) | 7090 | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | 53 | DI- I AZINON, ELI TOTAL TC IN BOT- IN TOM MA- TOM TERLAL TE | 0. | METHYL MI PARA- THION, TH TOT. IN TO MATT. NATT. (UG/KG) (UG/KG) | 0. | | NITRO-GEN, NH4
TOTAL
IN BOT.
MAT.
(MG/KG | 42 | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | | DDT, AZ:
TOTAL TK
IN BOT- IN
TOM MA- TOM
TERLAL T | ٥. | METH- MECONY- PACCHLOR, TI TOT. IN TO BOTTOM BE MATL. I | 0. | | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | 81500 | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | 18 | DDE, 1 TOTAL TI IN BOT- IN TOM MA- TOM TERIAL TI (UC/KG) (U | 1.9 | MALA- M THION, CJ TOTAL CI IN BOT- TO TOM MA- B TERIAL I (UG/KG) (U | 0. | | C.O.D.
TOTAL
IN
BOTTOM
MA-
TERIAL
(MG/KG) | 46000 | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | •04 | DDO, I TOTAL TK IN BOT- IN TOM MA- TOM TERLAL TI (UG/KG) (UK | 8.9 | LINDANE TI
TOTAL TI
IN BOT- IN
TOM MA- TOO
TERLAL TI
(UG/KG) (U | 0. | | TIME | 1230 | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 480 | I
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO | 10-24-79 | LII
TT
TOT
TOT
TT
TOT
TOT
TOT
TOT
TOT
TOT | 10-24-79 | | DATE | 10-24-79 | DATE | 10-24-79 | ь | 10-2 | L | 10-2 | 0.004 35.0 0.008 0.016 0.062 0.125 0.25 2.00 1.00 0.50 DIAMETER (MM) 1230 % FINER BY WEIGHT OCT , 1979 24... 15 TIME DATE BOTTOM MATERIAL PARTICLE SIZE TABLE 15.--WATER-QUALITY DATA,, BARATARIA BAY 291512089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, NEAR GRAND ISLE, LA | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | 0 | CHLOR-
DANE, .
TOTAL,
IN BOT-
TOM MA-
TERIAL
(UG/KG) | o. | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UC/KG) | 0, | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | |--|-----------------
---|----------|--|----------|---|-------------| | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | 0 | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | o. | HEPTA- HE CHLOR, CH TOTAL EPO IN BOT- TOT TOTAL MA- BO TERIAL M (UG/KG) (UG | 0. | TOXA- T
PHENE, TH
TOTAL TO
TOM MA- TOM
TERIAL TE | 0. | | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 1 2 | PCN,
TOTAL,
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | ETHION, CT
TOTAL IT
TO BOT- IN SOT-
TOM MA- TOW
TERLAL IT
(UG/KG) (UC | 0. | NE ITOM ERIL | 90 . | | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | <. 01 | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0 | ENDRIN, ETT
TOTAL TI
IN BOT- IN
TOM MA- TO
TERIAL T | 0. | PARA-
THION, PER-
TOTAL THAI
IN BOT- IN
TOM MA- BOT
TERIAL MATI
(UG/KG) (UG | 0. | | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 0 | GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | 0 | ENDO-
SULFAN, EN
TOTAL I
IN BOT- IN
TERIAL I
(UG/KG) (U | 0. | MIREX, T
TOTAL TIN BOT- IN
TOM MA- TO
TERIAL T | 0. | | - ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
3 (UG/G
AS AS) | ю | CYANIDE TOTAL TOTAL TOTAL TOM MA- | 0 | DI- I ELDRIN, ST TOTAL 1 IN BOT- IP TOM MA- TC TERIAL 1 (UG/KG) ((| 0. | METHYL TRI- THION, TOT. IN IN BOITOM TO MATL. (UG/KG) ((| 0. | | - NITRO-
4 GEN, NH4
+ OFG.
TOT IN
BOT MAT
(MS/KG
AS N) | 820 | ZINC, RECOV. FM BOT- TOM MA- TERIAL L (UG/G) AS ZN) | 0 10 | DI- AZINON, E TOTAL IN BOT- IN BOT- TOM MA- TERIAL (UG/KG) ((| 0. | METHYL 1 PARA- THION, TOT. IN THOTON THO THE IN | ٥. | | GEN, NHTRO-GEN, NH4 N TOTAL IN BOT. MAT. L (MG/KG) AS N) | 0 2.8 | SELE-
NIUM,
- TOTAL
- IN BOT-
L TOM MA-
TERIAL
(UG/G) | 2 | DDT, A TOTAL IN BOT- I TOM MA- T TERIAL (UG/KG) (| 0. | METH- M OXY- CHLOR, TOT. IN T BOTTOM MATL. (UG/KG) (| ٥. | | SOLIDS,
VOLA-
TILE IN
BOTIOM
MA-
TERIAL
(MG/KG) | 0 10000 | Y NICKEL, RECOV EM BOT TOM MA- I TERIAL (UG/G) AS NI) | | DDE,
TOTAL
TOTAL
IOM MA-
TERIAL
(UG/KG) (| 0. | MALA-
THION,
TOTAL
TOTAL
TOM MA-
TERIAL
(UG/KG) (| 0. | | C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) | 2900 | RECON. RECON. TOM MA- TOM MA- TERIAL TERIAL (UG/G) AS HG) | 00. | DDD,
TOTAL
IN BOT- I
TOM MA- T
TERIAL
(UG/KG) (| 0. | LINDANE
TOTAL
IN BOT- I
TOM MA- T
TERIAL
(UG/KG) (| 0. | | TIME |) 1230 | MANGA-
NEE,
RECOV.
EM BOT-
TOM MA-
TERIAL
(UG/G) | 001 6 | I
T
DATE (| 10-18-79 | I
I
T T | 10-18-79 | | DATE | 10-18-79 | DATE | 10-18-79 | | 10. | | 10 | 0.001 0.004 0.002 0.008 0.062 0.031 0.016 2.0 -- -- 0.125 40.0 2.00 1.00 0.50 0.25 -- -- 99.5 96.0 CCT , 1979 DIAMETER (NM) 18... 1230 % FINER BY WEIGHT TIME DATE BOTTOM MATERIAL PARTICLE SIZE TABLE 16.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY 292119091235300 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGUENE ISLAND, LA | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | Ω | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATT.
(UG/KG) | 0. | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | 0. | |---|----------|--|----------|--|----------|---|----------| | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | m | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | | 0. | | 0. | | | m | PCN, AI
TOTAL TOTAL TIN BOT- IN
TOM MA- TO
TERIAL TOWNS (UG/WG) (UG/WG) (UG/WG) | • | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | • | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | · | | M CHRO- MIUM, PERSON, THE BOT- L TOM MA- TERIAL (UG/G) | _ | | æ | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | PER-
THANE
IN
BOTTOM
MATERIL
(UG/KG) | 00. | | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | .10 | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | ENDRIN, E
TOTAL
IN BOT- I
TOM MA-
TERIAL
(UG/KG) (| 0. | PARA-
THION, F
TOTAL 1
IN BOT- 1
TOM MA-
TERIAL M | 0. | | BERYL-
LIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 0 | OIL AND
GREASE,
TOT. IN
BOT MAT
GRAVI-
METRIC
(MG/KG) | 0 | | 0. | | 0. | | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL T
(UG/G
AS AS) | 9 | CYANIDE O
TOTAL G
IN BOT- T
TOM MA- B
TERIAL
(UG/G | 0 | ENDO-
SULFAN,
TOTAL
IN BOT-
TOM MA-
TERIAL | | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | | | | 17 | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | METHYL
TRI-
THION,
TOT. IN
BOTION
MATL, | 0. | | NITRO-GEN, NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG | 1710 | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | | DI-
AZINON, H
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | METHYL
PARA-
THION,
TOT. IN BOTTOM
MATL.
(UG/KG) | o. | | NITRO-GEN, NH4 TOTAL IN BOT. MAT. (MG/KG | 3.4 | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | 0 | | 0. | | 0. | | SOLIDS,
VOLA- C
TILLE IN
BOTTOM 1
MA-
TERIAL (MG/KG) | 2000 | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERLAL 7
(UG/G | 10 | DDT,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | METH-OXY-CHLOR, TOT.
IN BOTTOM MATL. (UG/KG) | | | | 8100 | | .01 | DDE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 0. | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | 0. | | C.O.D.
TOTAL
IN
BOTTOM
MA-
TERIAL
(MG/KG) | 81 | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | 4. | LINDANE
TOTAL
IN BOT-
TOM MA-
TERIAL | o. | | TIME | 1000 | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | 150 | T TO | -79 | | -79 | | DATE | 10-25-79 | DATE | 10-25-79 | DA | 10-25-79 | DATE | 10-25-79 | 0.002 0.004 0.008 0.016 BOTTOM MATERIAL PARTICLE SIZE 0.031 0.062 16.5 0.125 0.25 0.50 1.00 2.00 DIAMETER (MM) 1000 % FINER BY WEIGHT TIME OCT , 1979 25... 10 DATE PLATE 2. MAP SHOWING LOCATION OF SAMPLING SITES ALONG THE LOWER CALCASIEU RIVER, LOUISIANA. 89°40' 89°45' Base from U.S. Geological Survey Black Bay, 1964; Empire, 1960; Fort Livingston, 1961; and Pointe a la Hache, 1962 PLATE 3. MAP SHOWING LOCATION OF SAMPLING SITES FOR NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LOUISIANA. PLATE 4. MAP SHOWING LOCATION OF SAMPLING SITES, MISSISSIPPI RIVER-GULF OUTLET, LOUISIANA. PLATE 5. MAP SHOWING LOCATION OF SAMPLING SITES, SOUTHWEST PASS, LOUISIANA. | | - | | |--|---|--| | | | | | | | | PLATE 6. MAP SHOWING LOCATION OF SAMPLING SITES, BARATARIA BAY WATERWAY, GULF SECTION, LOUISIANA. | | , | , | | |--|---|---|--| | | | • | PLATE 7. MAP SHOWING LOCATION OF SAMPLING SITES, EUGENE ISLAND, ATCHAFALAYA BAY AREA, LOUISIANA. PLATE 8. MAP SHOWING LOCATION OF SAMPLING SITE, CALCASIEU SHIP CHANNEL, GULF SECTION, LOUISIANA. PLATE 10. MAP SHOWING LOCATION OF SAMPLING SITES, GULF INTRACOASTAL WATERWAY, LOUISIANA. | | | | , | |--|--|---|---| | | | | | | | | | | | | | · | • | PLATE 1. MAP SHOWING LOCATION OF SAMPLING SITES ALONG THE UPPER CALCASIEU RIVER, LOUISIANA. ENLIST OF EXTER PLATE 9. MAP SHOWING LOCATION OF SAMPLING SITES, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET. NEW ORLEANS AREA, LOUISIANA.